KLEINFELDER

IMPLEMENTATION OF THE REVISED AQUIFER TESTING WORK PLAN BMI COMMON AREA EASTSIDE HENDERSON, NEVADA

Project No. 83173.10

September 25, 2007 Revised: November 16, 2007

This document was prepared for use only by the client, only for the purposes stated, and within a reasonable time from issuance. Non-commercial, educational and scientific use of this report by regulatory agencies is regarded as a "fair use" and not a violation of copyright. Regulatory agencies may make additional copies of this document for internal use. Copies may also be made available to the public as required by law. The reprint must acknowledge the copyright and indicate that permission to reprint has been received.

A Report Prepared for:

Ranajit (Ron) Sahu, Ph.D., CEM Director of Environmental Services Basic Remediation Company 875 West Warm Springs Road Henderson, Nevada 89011

Implementation of Revised Aquifer-Testing Work Plan BMI Common Area Eastside Henderson, Nevada

Kleinfelder Job No.: 83173.10

September 25, 2007

Revised: November 16, 2007

Dugny P. Witt

Gregory P. Wittman, P.G.

Senior Hydrogeologist

Gary A. Carter, P.E., C.E.M.

Environmental Group Manager

KLEINFELDER

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936

Fax: (702) 361-9094 www.kleinfelder.com

TABLE OF CONTENTS

CHAP	TER PAGE
1	INTRODUCTION1
2	SITE SETTING
3	FIELD ACTIVITIES
4	AQUIFER TESTING 10 4.1. Slug Testing 10 4.2. PUMPING TESTS 13 4.2.1. Pumping Test at AA-09 14 4.2.2. Pumping Test at AA-20 16 4.2.3. Pumping Test at AA-08 18
5	FINDINGS21
6	REFERENCES22
TABL	ES
1 2 3 4 5	Soil Boring and New Monitoring Well Construction Details Groundwater Elevations in New and Pre-existing Monitoring Wells Hydraulic Conductivities Based upon Slug Testing Results AA-09 Drawdown, Pumping Rate, Test Duration, and Recovery Time Aquifer Pump Testing Results for Well AA-09
6 7 8 9	AA-20 Drawdown, Pumping Rate, Test Duration, and Recovery Time Aquifer Pump Testing Results for Well AA-20 AA-08 Drawdown, Pumping Rate, Test Duration, and Recovery Time Aquifer Pump Testing Results for Well AA-08
10 11 12	Hydraulic Conductivity Moisture Content of Soil Total Organic Carbon

TABLE OF CONTENTS (CONTINUED)

TABLES

- 13 Particle-Size Analysis of Soils
- 14 Specific Gravity of Coarse and Fine Aggregate
- 15 Specific Gravity of Soil

FIGURES

Figure 1	Groundwater Changes in Monitoring Well MCF-06A June, 2007
Figure 2	Groundwater Changes in Monitoring Wells MCF-06B and MCF-06C June,
2007	
Figure 3	Groundwater Changes in Monitoring Wells at the AA-09 Site June, 2007
Figure 4	Groundwater Changes in Monitoring Well Site AA-20 June, 2007
Figure 5	Groundwater Changes in Monitoring Well Site AA-20 June, 2007

PLATES

1 Project Location

APPENDICES

- A Boring Logs
- B Soil Sample Physical Testing Reports
- C Slug Test Data Plots and Pertinent Pre-existing Boring Logs
- D Aquifer Pumping Test Data
- E NDEP Comments on September 25, 2007 Version and Corresponding Responses
- F Field Logs for Aquifer Tests

1 INTRODUCTION

Kleinfelder was retained to implement the scope of work described in the "Revised Aquifer Testing Work Plan, BMI Common Area Eastside," dated January 9, 2007, prepared for the Basic Remediation Company by Daniel B. Stephens & Associates, Inc. The goal of this investigation was to obtain data that characterizes the hydraulic parameters of the geologic materials that form the water-bearing zones at the site, with primary emphasis on the alluvial aquifer (Aa) and the upper portion of the Upper Muddy Creek Formation (TMCf). This was accomplished through slug and pump testing techniques described in the scope of services presented in a proposal to BRC dated April 6, 2007. The procedures and results of this work are described herein.

2 SITE SETTING

2.1. SITE LOCATION

The BMI Common Area Eastside project site encompasses approximately 2,287 acres, and is located near the BMI Industrial Complex in Clark County, Nevada, approximately 13 miles southeast of Las Vegas and two miles northeast of the City of Henderson's downtown. The project location and boundaries are outlined in Plate 1.

2.2. REGIONAL GEOLOGY AND HYDROGEOLOGY

On the basis of drilling performed by others, the area is underlain by silt and clay layers interbedded with alluvial sandy units. According to published information, the predominant sediments found at the project site are Quaternary sediment and fan deposits that have been covered by settling ponds, many of which contain tailings derived from the Three Kids Magnesium Mine. The Quaternary sediments at surface elevations are generally described as an "anastimosing network of undifferentiated Holocene alluvium, occurring in low wash terraces and modern wash deposits" (Bell, 1980).

The Quaternary alluvial deposits set unconformably on silts and clays of the Tertiary Muddy Creek Formation. The Muddy Creek Formation sediments originate from extensive basin fill of lacustrine and subaerial origin (Longwell. 1965). The Upper Muddy Creek Formation is primarily silts and clay but occasionally includes discontinuous sandy lenses. The sand lenses can be several feet thick but are discontinuous and difficult to correlate between borings. The fine-grained lacustrine facies of the Upper Muddy Creek Formation are dominated by silts and clays, but also include discontinuous sand layers and lenses. (Kleinfelder, 2005).

Groundwater in the alluvial aquifer is unconfined, and appears to be perched upon the upper fine-grained clays and silts of the underlying fine-grained facies of the Muddy

Creek Formation. Groundwater is also found occurring as confined aquifers in several of the sand units of the Muddy Creek Formation.

11/4:21

3 FIELD ACTIVITIES

Preparatory and field activities were performed from June to August 2007 and consisted of the following tasks:

- Determine suitability of existing cores for laboratory physical testing
- Determine short-term water level fluctuations
- Obtain new core samples for laboratory testing
- Install and develop monitoring wells to be used for aquifer pumping tests
- Measure depths to water in the new and pre-existing monitoring wells
- Perform slug-testing
- Perform step-drawdown testing
- Perform constant-rate pumping tests

3.1. DETERMINE SUITABILITY OF EXISTING CORES FOR LABORATORY USE

BRC had an archive of soil cores for the area of interest stored at a facility operated by GES of Henderson, Nevada. Kleinfelder inspected the stored cores to assess their suitability for laboratory hydraulic conductivity testing. Kleinfelder found the cores to be desiccated and unsuitable for use in hydraulic conductivity testing. It was decided to obtain the samples for laboratory use from cores drilled for the new monitoring wells.

3.2. ASSESS SHORT-TERM WATER LEVEL FLUCTUATIONS

To evaluate short-term fluctuations that could affect the interpretation of water level data obtained during the aquifer testing, short-term changes in water levels were monitored in wells MCF-06A, MCF-06B, MCF-06C. Data loggers were installed and programmed to collect measurements at 15-minute intervals. The data loggers recorded water level changes in the three wells from June 7 to July 9, 2007. Plots showing the water level changes for these three monitoring wells are presented in Plates 2 and 3.

The groundwater levels in monitoring well MCF-06A, which is screened in the Muddy Creek Formation from 1177 to 1197 feet, increased approximately three feet over the 34-day period the data loggers were recording. Groundwater levels in monitoring well MCF-06B, which is screened from 1531 to 1551 feet in the alluvial aquifer, generally decreased over the same time period. Daily variations in the groundwater levels in monitoring well MCF-06B suggest the aquifer is being influenced by barometric pressure and may indicate the aquifer is either semi-confined or confined.

Groundwater levels in monitoring well MCF-06C, which is screened from 1554 to 1574 in the alluvial aquifer, increased approximately 1.28 feet over the recording time period. Because the water levels in this well did not appear to fluctuate in response to daily barometric pressure changes, Kleinfelder assumes the aquifer is unconfined.

Water levels were recorded in monitoring wells at the AA-09, AA-20 and AA-08 sites either before or after the aquifer test. Measurements in monitoring wells at AA-09 show water levels generally rising before the aquifer test on June 22, 2007. Water levels remained relatively constant after the aquifer test.

Water levels in monitoring wells at the AA-20 site increased approximately one foot during the 40 days before the aquifer test.

Water levels in the shallower monitoring wells at the AA-08 site steadily decreased before the aquifer test and rose notably after the aquifer test. The rise in groundwater level after the aquifer test period increased water levels to above the initial water levels at the beginning of the pump test.

3.3. SOIL BORINGS AND MONITORING WELL INSTALLATION

Soil boring and monitoring well logs are in Appendix A.

Kleinfelder's subcontractor, Boart-Longyear of Mesa, Arizona, drilled 10 soil borings and completed 6 as wells under the oversight of our geologist. The 10 soil borings were drilled using the Rotosonic® method, which allowed us to obtain continuous core samples. This method uses variable high frequency vibration generated by a sonic drill head to advance the core barrel and drill casing. The four-inch diameter core barrel is

vibrated and slowly rotated to obtain either a continuous core of soil. The core barrel was also used to remove the drill cuttings from the borehole, leaving a relatively clean hole. Advancement of the sonic casing during drilling prevents caving of the hole and seals off upper water zones, reducing the potential for cross-contamination of different aquifer zones. During monitoring well construction, the sonic casing is slowly vibrated out of the hole as the filter pack sand, bentonite seal, and well grout fill the annulus. The vibration densifies the filter pack material during withdrawal of the drill casing, reducing or eliminating the usual surging required to set the filter pack.

Kleinfelder's geologist lithologically logged the cores as the borings were drilled. Pilot borings for the wells were reamed using an air-rotary casing hammer drilling rig.

The soil borings were drilled in locations selected on the basis of the BRC work plan submitted to the NDEP. Soil samples from depths below the water table were selected for physical testing to obtain aquifer characteristics data.

One of the wells was completed as a four-inch extraction well near wells AA-08. The new well served as a pumping well, while the existing wells served as observation wells. The extraction well was screened across the entire Qal saturated thickness, which was found to extend to 60 feet at AA-08. The remaining five wells, constructed with 2-inch casings, were intended to serve as observation wells for the pumping tests

Soil cuttings generated from the drilling operation were contained in 55-gallon drums and were left nearby to be transported from the site at a later date.

The monitoring wells were constructed as follows: screened sections of Schedule 40 PVC were lowered into the borings; the PVC sections were surrounded by and covered by silica sand filter packs (#3), two-foot thick bentonite transition seals were installed above the filter packs; and the annuli were grouted to the surface with neat cement. The wells were finished with locking pressure caps situated within monument-style well vaults. The bottom cap of each well was threaded. Soil boring depths and new monitoring well construction details are presented in Table 1, below:

Table 1 - Soil Boring and New Monitoring Well Construction Details

Soil Borings & New Wells	Date Completed	Depth bgs (ft)	Casing Stick-up ags (ft)	Screen Interval (ft)	Casing Diameter (in)	Slot Size (in)
AA-06	6/3/2007	65				
AA-08-OWA	6/4/2007	60	3.1	10 to 60	2	0.020
AA-08-OWB	6/5/2007	50	3.1	10 to 50	2	0.020
AA-08-EW	6/5/2007	60	3.1	10 to 60	4	0.020
AA-09-OW	6/1/2007	70	3.0	30 to 70	2	0.020
AA-20-OW	6/2/2007	55	3.1	15 to 55	2	0.020
B-1	5/31/2007	100				
B-2	5/31/2007	100				
B-3	5/29/2007	80				
B-4	6/1/2007	90				

Bgs

Below ground surface

Ags

Above ground surface

Ft

Feet

In

Inches

NA Not available

No new wells were installed near monitoring well AA-26 as outlined in the work plan due to land access issues. These wells and the associated aquifer test will be completed at a later date when an access agreement is obtained.

After the monitoring wells were installed, the top of each well was surveyed by a licensed land surveyor contracted directly to BMI, so that depth to groundwater measurements in the wells could be converted to groundwater elevations used to assess groundwater gradients.

3.4. MONITORING WELL DEVELOPMENT

A minimum of 48 hours after installation, Kleinfelder's subcontractor, Boart-Longyear, developed the monitoring wells using a Pulstar 20000 HD pumping/development rig. Before beginning development, the static water levels in the wells were measured and recorded. During development, surging along the screened intervals of the wells was performed to set the sand packs, and the wells were bailed using a stainless steel piston bailer to remove sediment. The discharge was periodically monitored for clarity, pH, temperature, and specific conductance. Development was considered complete

when the purged water was relatively clear, and the monitored parameters were relatively stabile.

The well development purge water was contained and disposed of in a pond at the BMI site as designated by the client.

3.5. WATER LEVEL MEASUREMENT

Several days after the new wells were developed, Kleinfelder measured the depth to water in each of the site monitoring wells. The water depth measurements and calculated groundwater elevations are presented in Table 2, below:

Table 2
Groundwater Elevations in New and Pre-existing Monitoring Wells

Well	Date Measured	Top of Casing Elevation (ft)	Depth to Water (ft)	Static Water Level Elevation (ft)
MCF-06C (AA-06C)	6/2/2007	1633.12	51.60	1581.52
MCF-06B	6/5/2007	.1633.18	54.39	1578.79
MCF-06A	6/5/2007	1588.80	43.66	1545.14
AA-08-OWA	6/4/2007	1581.03	14.6	1566.4
AA-08-OWB	6/5/2007	1580.97	15.2	1565.8
AA-08-EW	6/5/2007	1581.86	15.7	1566.2
AA-09-OW	6/27/2007	1695.95	36.3	1659.6
MCF-09C	6/5/2007	1696.23	36.36	1659.87
MCF-09B	6/5/2007	1685.77	36.10	1649.67
MCF-09A	6/5/2007	1695.87	38.31	1657.56
AA-20-OW	7/10/2007	1629.07	27.1	1602.0
AA-20	6/5/2007	1628.49	27.27	1601.22

3.6. LABORATORY TESTING

Because it was determined that the archived soil cores were not usable for the laboratory determination of hydraulic parameters, new samples needed to be collected. Kleinfelder oversaw drilling of 10 soil borings at three locations within the east side of the upper ponds. The borings were continuously core sampled at depths below the water table, within the alluvium and upper portion of the TCMf. Kleinfelder lithologically

logged the three-inch diameter cores and selected samples for physical testing. Monitoring wells were installed in five of the soil borings.

The depths for the monitoring wells and borings are listed in Table 1. The selected soil samples were tested using the following ASTM methods:

Analysis/Method

Initial volumetric and gravimetric water content

ASTM D2216/ D4643/D2974

Dry bulk density ASTM D2937/ MOSA1Chp.13

Calculated total porosity ASTM D2435/ MOSA1Chp.18

Saturated Hydraulic Conductivity

Flexible Wall ASTM D5084

Rigid Wall ASTM D2434

Specific Gravity (Particle Density)

Fine (< 4.75 mm diameter material) ASTM D854

Coarse (> 4.75 mm diameter material) ASTM C127

Particle size analysis (Wet)

Standard Sieves with Wash ASTM D422

Hydrometer (applicable when >5% fines) ASTM D422

Total or Fractional Organic Carbon

Analysis performed by Hall laboratory in Albuquerque, NM

The results for the various tests are listed in Tables 10 through 15. The soil sample physical testing reports are also presented in Appendix B.

Data posted from the results of the testing listed in Tables 10 to 15 will be used to provide soil property information to develop the conceptual model and computerized groundwater model outlined in the Groundwater Modeling Work Plan development by Daniel B. Stephens and Associates, Inc in January 2007.

4 AQUIFER TESTING

4.1. SLUG TESTING

Kleinfelder performed aquifer slug tests on eight wells, MCF-03B, MCF-06C, MCF-16C, AA-13, AA-22, AA-07, AA-09, and AA-20. Five of these slug tests were performed per the DSBS&A standard operating procedure (SOP) as outlined in Appendix C of the work plan. The remaining three were tested with a single slug test due to the long time period for water level recovery.

A 10-foot slug was created by filling a two-inch diameter PVC pipe with sand and sealing both ends. A five-foot-long, two-inch diameter slug was constructed for wells with smaller saturated aquifer thicknesses. Field staff repeated each slug test at least twice with a third test performed if the results from the first two were not similar. Monitoring wells MCF-06C, MCF-16C, and MCF-03B were slug tested once due to slow recovery of water levels in the wells.

The changes in water levels in the wells were recorded using a 30 psi In-Situ Troll 700 data logger. The data loggers were set to record detailed early time information. The Bouwer-Rice solution in Aquifer Test Pro was used to calculate the hydraulic conductivities listed in Table 3. The initial filter pack response and the secondary response were identified in the analysis. Only the secondary response was used to determine the hydraulic conductivities. The plots the recovery responses and monitoring well logs for the slug test data are located in Appendix C.

Table 3 - Hydraulic Conductivities Based upon Slug Testing Results

Well Number	Slug Length (feet)	Initial Water Level Displacement (feet)	Hydraulic Conductivity (feet/day)
AA-20 Slug In-1	5	0.747	29.0
AA-20 Slug Out-1		1.765	32.5
AA-20 Slug In-2	5		Bad Data
AA-20 Slug Out 2		1.154	44.0

Table 3 - Hydraulic Conductivities Based upon Slug Testing Results (Continued)

Well Number	Slug Length (feet)	Initial Water Level Displacement (feet)	Hydraulic Conductivity (feet/day)
MCF-16C Slug In	5	0.741	0.24
MCF-03B Slug In	10	2.947	0.18
AA-13 Slug In-1	10	1.551	12.2
AA-13 Slug Out-1		2.418	14.2
AA-13-Slug In-2	10	1.981	11.2
AA-13 Slug Out-2		2.107	12.5
AA-07 Slug In-1	10	2.436	8.0
AA-07 Slug Out-1		1.965	6.5
AA-07 Slug In-2	10	1.685	5.0
AA-07 Slug Out-2		1.990	8.0
AA-22 Slug In-1	10	1.003	0.6
AA-22 Slug Out-1		2.261	0.3
AA-22 Slug In-2	10	1.174	0.5
AA-22 Slug Out-2		2.284	0.6
AA-09 Slug In-1	10	0.876	Abnormal Oscillatory Response – Unusable Data
AA-09 Slug Out-1		1.789	67.3
AA-09 Slug In-2	10		Abnormal Oscillatory Response – Unusable Data
AA-09 Slug Out-2		1.909	58.4
AA-09 Slug In-3	10		Abnormal Oscillatory Response – Unusable Data
AA-09 Slug Out-3		1.736	62.0
MCF-06C Slug In	5	5.8	1.5

The groundwater responses in all of the tests were similar for both the slug-in and the slug-out tests. Each successive test in a monitoring well remained relatively constant without showing an increase in hydraulic conductivity. The slugs in all of the tests came out of the well clean without any silts or clays. The clean slugs and the consistency of the tests results suggest the wells are well developed. Minor differences in the responses are noted when plotting the recovery curves for the tests where small oscillatory responses in a few of the slug in tests occurred in a few of the tests. The oscillatory responses occurred in the initial phase of the tests associated with the well

filter pack. The generally low hydraulic conductivities found in most of the wells may have helped to keep the range of the values consistent.

The slug tests at AA-20 included two slug-in and two slug-out tests. The second slug-in test produced bad data, likely caused by the slug disturbing the data logger cable during insertion. The screened interval in AA-20 is logged as silty sand with gravels. The range of hydraulic conductivities from 29 to 44 feet per day falls within the expected values for a silty sand or fine sand.

A single slug-in test was performed at MCF-16C. The change in water level from the slug-in test took 225 minutes to fully recover. The saturated section within the screened interval is logged as sandy silt. The tested hydraulic conductivity of 0.24 feet per day matches the values commonly found in sandy silts. Lithologies logged in the upper section of the screen include poorly graded gravel and poorly graded sands. The low value of the tested hydraulic conductivity suggests the coarser sediments were not saturated and did not affect the groundwater response.

A single slug in test was performed at MCF-03B. The change in water level from the slug-in test took 182 minutes to fully recover. The screened lithologies for this monitoring well include sandy silt and silt with clay. The hydraulic conductivity of 0.18 feet per day in this test is reflective more by the sandy silt lithology and less of the silty clay which would likely cause a lower value.

The hydraulic conductivities tested in AA-13 ranged from 12.2 to 14.2 feet per day. The lithologies within the screened section of AA-13 include poorly graded sand, poorly graded gravel with silt, poorly graded gravel, and very fine silt. The hydraulic conductivities tested in this well are more commonly associated with fine sands.

The screened lithologies in monitoring well AA-07 are logged as silts interbeds of silty sand with gravel and gravelly silty sand. The silty sand layers occur in thin layers throughout the screened interval. The gravelly silty sand occurs at the base of the screen. The tested hydraulic conductivities ranging from five to eight feet per day in AA-07 are common to silty sands and not the silts.

The lithologies in the screened section of monitoring well AA-22 is predominately poorly graded sand in the upper half and in poorly graded gravel with sand in the lower half. The hydraulic conductivities tested in AA-22 range from 0.3 to 0.6 feet per day. These hydraulic conductivities are commonly found in silty sands to fine sands suggesting the poorly graded sands in this well likely have a significant finer grained sand component.

Monitoring well AA-09 was tested with three slug-in and slug-out tests. The slug-in tests produced an abnormal oscillatory response that could not be analyzed with a known solution. The slug-out tests resulted in normal curves without oscillation, with a range of hydraulic conductivities from 58.4 to 67.3 ft/day. These hydraulic conductivity values are commonly associated with silty sand that is found within the screened section of this well.

4.2. PUMPING TESTS

According to Kleinfelder's authorized work scope (April 6, 2007), aquifer pump testing was to be performed in six wells: existing wells, AA-07, AA-09, AA-20, MCF-06C; and new wells AA-08 and AA-026. Kleinfelder cancelled the MCF-06C and AA-07 testing, because the slug testing results indicated that we could expect low hydraulic conductivities of less than 10 feet per day. The pump testing at AA-26 was cancelled because we were unable to obtain authorization to access the well site.

Groundwater extracted from the wells during the pump tests was contained at the site in frac tanks provided by Rain for Rent of Las Vegas, Nevada. The contained water was either transferred by water truck or piped to an existing pond on the project site designated by the client. The volume of groundwater transferred to the pond was recorded and reported to State of Nevada officials.

The hydraulic conductivity and storage coefficients for the data from the pump tests were analyzed using Theis equation derived routines in Aquifer Test Pro, Version 4.0 from Waterloo Hydrogeologic. The modeled curves for the data assume the following conditions:

The aquifer is unconfined.

- The aquifer is isotropic.
- The aquifer is infinite
- Discharge is constant during the constant rate tests.
- Discharge is constant during the tests
- The well screens penetrating the entire saturated zone.

The water table in an unconfined aquifer is equal to the elevation of the head, therefore, transmissivity is no longer constant, and it will decrease with increasing drawdown. This means that there is not only horizontal flow to the well, but there is also a vertical component, which will increase the closer you get to the well. Since transmissivity in unconfined aquifers is not constant, there is no closed solution for this aquifer type. The Theis equation can be corrected in these situations by using the Jacob (1944) correction to compensate for changes in transmissivity.

The Agarwal (1980) method was used to analyze the recovery period data from the pump tests. The Agarwal method assumes there is a two-dimensional radial convergent flow field, in an infinite confined aquifer, with a fully penetrating well, with or without skin effect, and no well-bore storage.

Plots of the modeled data and well logs from each of the aquifer tests are in Appendix D.

4.2.1. Pumping Test at AA-09

On June 26, 2007, Kleinfelder conducted a step-drawdown test at monitoring well site AA-09C. The test was conducted using a Grundfos pump capable of variable pumping rates up to 40 gallons per minute (gpm). Monitoring well MCF-06C (AA-09C) was used as the extraction well for the test. Monitoring wells MCF-09A, MCF-09B and AA-09OW were used as observation wells. In-situ Troll 700 data loggers were set in the pumping

well and the observation wells before beginning the test. The initial depth to water at the start of the tests for AA-09OW was 36.3 feet from top of casing (toc) in the well.

The initial pumping rate for the step test was set at five gpm and pumped for 90 minutes with resulting drawdown of 0.97 feet. The pumping rate was increased to 15 gpm, which caused drawdown to the bottom of the well at the level of the pump. The pumping rate was reset at 5 gpm and the water levels rapidly returned to a drawdown level of 0.91 feet. The five-gpm rate was increased after 109 minutes to seven gpm, causing an increase in drawdown to 2.1 feet. The seven-gpm rate was maintained until the end of the test at 186 minutes, when drawdown had reached the level of the pump at the bottom of the well.

On the basis of the step-drawdown testing results, Kleinfelder selected a pumping rate of 5.7 gpm for the constant rate test.

On June 27, 2007, Kleinfelder began a constant-rate pumping test of AA-09C. The pumping rate was set at 5.7 gpm and maintained for 13 hours. Drawdown was monitored in wells AA-09OW, AA-09a, MCF-09B, and MCF-09C and recorded. Drawdown from pumping occurred in AA-09 and AA-09OW, while no drawdown was observed in MCF-09A or MCF-09B. The pumping rate of 5.7 gpm created an approximate drawdown of 4.2 feet in the extraction well over the duration of the test. Drawdown began to increase at 12.7 hours into the test, suggesting a boundary condition had been encountered. The test was terminated at 13 hours and groundwater levels were allowed to recover.

Table 4 shows the pumping rate, test duration and resulting drawdown for the constant rate drawdown test for AA-09C.

Table 4 - AA-09 Drawdown, Pumping Rate, Test Duration, and Recovery Time

Well Number	Date	Initial Water Level (amsl)	Drawdown Feet	Pumping Rate	Test Duration (minutes)	Recovery Time (minutes)
AA-09	6/27/2007	1657.63	5.14	5.7	780	547
AA-09OW	6/27/2007	1658.74	0.49	-	-	-
MCF-09A	6/27/2007	1659.6	0	-	-	-
MCF-09B	6/27/2007	1659.67	0	-	-	-

Analysis of pre-test and post-test water level measurements indicated a change of less than 0.1 foot/day at the monitoring well site. No correction was applied to the test data. The results from the step test, constant rate, and the recovery tests are listed in Table 5.

Table 5 Aquifer Pumping Test Results for Well AA-09

Test	Well Name	Hydraulic Conductivity (ft/day)	Storage Coefficient	Radial Distance to Pumping Well
Step Test "	AA-09C	11.1	na	
Constant Rate	AA-09C	9.6	na	
	AA-09OW	15.4	0.0572	29.29
Recovery	AA-09C	9.6	na	
	AA-09OW	14.4	0.0191	29.29
Mean		12.0	0.0665	
Geometric Mean		11.8		
Percent				
difference	<u> </u>	2.0		

The lithologies logged in monitoring well AA-09C are poorly graded sand, poorly graded sandy gravel, and very sandy silt. The hydraulic conductivities tested at the AA-09 site are common to silty sands to fine sands. Storativity values from monitoring well AA-09OW were 0.0572 and 0.0665. These storativity values are within the range associated with unconfined conditions.

4.2.2. Pumping Test at AA-20

On July 10, 2007, Kleinfelder conducted a step-drawdown test of well AA-20C using a three-inch Grundfos pump capable of variable pumping rates up to 30 gpm. The initial pumping rate was set at three gpm and pumped for 90 minutes with a resulting drawdown of 0.80 feet. The pumping rate was increased to five gpm, which resulted in increasing drawdown for the next 90 minutes. On the basis of the step-drawdown testing results, a pumping rate of four gpm was selected for the constant rate pump test.

On July 11, 2007, Kleinfelder began a constant-rate pumping test of AA-20C. The pumping rate was set at four gpm and maintained for a period of 6.5 hours. A drawdown of approximately 2.4 feet was observed in the extraction well AA-20C. Drawdown began to increase at 3.7 hours into the test, suggesting a boundary condition that provided a source of water had been encountered. The test was terminated at 8.2 hours and allowed to recover.

The initial depth to water at the start of the tests for AA-20OW was 27.1 feet from toc in the well.

Table 6 shows the details for drawdown, pumping rate, and test duration for AA-20.

Table 6 - AA-20 Drawdown, Pumping Rate, Test Duration, and Recovery Time

Well Number	Date	Initial Water Level (amsl)	Drawdown Feet	Pumping Rate	Test Duration (minutes)	Recovery Time
AA-20	7/11/2007	1601.73	2.52	4.0	492	416
AA-20OW	7/11/2007	1601.72	0.21	-	-	-

Analysis of pre-test and post-test water level measurements in AA-20 indicated a 0.19 foot/day rise in water levels at the monitoring well site. A 0.19 foot/day correction was applied to the test data. Results for the step test, pump test and recovery test are listed in Table 7.

Table 7 - Aquifer Pump Testing Results for Well AA-20

Test	Weil Name	Hydraulic Conductivity (ft/day)	Storage Coefficient	Radial Distance to Pumping Well
Step Test	AA-20	33.6	na	
Constant Rate	AA-20	22.7	na	
	AA-20OW	69.0	0.0379	14.08
Recovery	AA-20	29.7	na	
	AA-20OW	52.1	0.0450	14.08
Mean		41.4	0.0415	
Geometric Mean		38.2		
Percent difference		7.6		

The hydraulic conductivities at monitoring well AA-20 ranged from 22.7 to 69.0 feet per day. The lithologies in the screened section of monitoring well AA-20 are predominately silty sands with gravel. The range of hydraulic conductivities tested at this site are commonly found in fine to medium sands. The storativities of 0.0379 and 0.0450 are within the range of values associated with unconfined aquifers.

4.2.3. Pumping Test at AA-08

On July 18, 2007, Kleinfelder conducted a step-drawdown test of well AA-08 using a three-inch Grundfos pump capable of variable pumping rates up to 42 gpm. The initial pumping rate was set at 15 gpm and pumped for 90 minutes with a resulting drawdown of 0.25 feet. The pumping rate was increased to 20 gpm, which caused a drawdown increase to 0.41 feet. The pumping rate was increased to 30 gpm, which resulted in a drawdown increase to 0.61 feet. The pumping rate could not be increased above 30 gpm with the installed pump due to the increased back-pressure caused by the pipeline to the water tanks. On the basis of the step-drawdown testing results, a pumping rate of 30 gpm was selected for the constant-rate test.

The constant-rate pumping test was begun in the evening of July 18, 2007 using well AA-08EW as the extraction well. The pumping rate was set at 29 gpm and maintained for 24 hours. Drawdown during pumping was noted and monitored in wells AA-08EW, AA-08OWA, and AA-08OWB. At 24 hours, the pump motor failed, at which time the recovery rates for the wells were recorded. The pumping rate of 29 gpm created an approximate drawdown of 0.33 feet over the duration of the test in AA-08EW. Drawdown in the monitored wells began to decrease (i.e., water levels began to increase) during the test suggesting a boundary condition had been encountered. The potential exists that water from the ponds at the wastewater treatment plant to the south of the tested wells may have caused the boundary condition and contributed to the increase in groundwater levels. The initial groundwater level in AA-08EW was measured at 15.66 feet toc at the start of the tests. Table 8 shows the details for the constant rate drawdown test for AA-08EW.

Table 8 - AA-08 Drawdown, Pumping Rate, Test Duration, and Recovery Time

Well Number	Date	Initial Water Level (amsl)	Drawdown Feet	Pumping Rate	Test Duration (minutes)	Recovery Time
AA-08EW	7/18/2007	1565.34	0.328	29.0	1440	390
AA-08OWA	7/18/2007	1565.76	0.018		-	-
AA-08OWB	7/18/2007	1566.32	0.070			

Analysis of pre-test and post-test water level measurements indicated a change of less than 0.1 foot/day at monitoring well site AA-08. No correction was applied to the test data. However, an abnormal curve in the drawdown plots for the constant rate pumping test suggests a possible rise in groundwater levels during the test. Results for the step test, pump test and recovery test are listed in Table 9.

Table 9 - Aquifer Pumping Test Results for Well AA-08

Test	Well Name	Hydraulic Conductivity (ft/day)	Storage Coefficient	Radial Distance to Pumping Well
Step Test	AA-08 EW	192.0	na	
Constant Rate	AA-08EW	654.0	na	
	AA-08OWA	564.0	0.0920	29.35
	AA-08OWB	846.0	0.0292	63.66
Recovery	AA-080EW	417.0	na	
	AA-08OWA	446.0	0.148	29.35
	AA-08OWB	451.0	0.0409	63.66
Mean		510.0	0.0775	
Geometric Mean		469.5		
Percent difference		7.9		

The lithologies logged in monitoring wells at AA-08 are listed as silty sands with gravel, silty gravel with sand, well graded sands, and well graded gravels. The hydraulic conductivity results from pumping test in these wells range from 192 to 846 feet per day. These hydraulic conductivities are consistent with values commonly associated with

sandy gravels and gravels. The storativity values ranged from 0.148 to 0.0292 indicating unconfined conditions.

5 FINDINGS

Hydraulic conductivities derived from slug testing ranges from 0.18 to 67.3 feet per day. Hydraulic conductivities from aquifer testing produced values from 9.6 to 846.0 feet per day.

During the pumping tests at AA-09 and AA-20, the extraction rates of 5.7 and 4.0 gpm, respectively, were lower than anticipated. The shallower monitoring wells at both of the sites had sufficient drawdown to allow for analysis of the data.

6 REFERENCES

- Agarwal, R.G., 1980. A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. Proceedings of the 55th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers. Paper SPE 9289.
- Bell, J.W., and Smith, E.I., 1980, Geologic map, Henderson quadrangle: Nevada Bureau of Mines and Geology Map 67.
- Jacob, C. E., 1944, Notes on determining permeability by pumping tests under water-table conditions: U.S. Geological Survey, mimeographed report, referenced in Walton, 1970.
- Kleinfelder, 2005. Hydrogeologic Investigation 2005, Phase V Drilling, American Pacific Corporation, Henderson, Nevada. July 27
- Longwell, C.R., Pampeyan, E.H., Bowyer, Ben and Roberts, R.J., 1965, Geology and mineral deposits of Clark County, Nevada: Nevada Bureau of Mines and Geology Bulletin, no. 62,

Table 10 HYDRAULIC CONDUCTIVITY Project Name: BMI Aquifer Test Henderson, Nevada Project Number: 83173

						Project Nu	ımber: 831
Sample ntification	Sample Depth (ft)	ASTM Test Method	Sample Type	Confining Stress, psi	Permeability, cm/sec	Average Hydraulic	Effective Pressure

Sample Identification	Sample Depth (ft)	ASTM Test Method	Sample Type	Confining Stress, psi	Permeability, cm/sec	Average Hydraulic Gradient	Effective Cell Pressure, psi	Specimen Height, cm (Before/After Test)	Specimen Diameter, cm (Before/After Test)	Dry Unit Weight, pcf (Before/After Test)	Moisture Content, % (Before/After Test)
AA-20-OW	30-31.5	D5856	Sample Linear	11.5	1.35E-07	6.1	11.5	5.08/5.08	4.85/4.85	79.6/77.2	39.6/40.8
AA-20-OW	50-51.5	D5856	Sample Linear	19.0	6.38E-08	9.9	19.0	5.08/5.05	4.85/4.85	93.7/95.1	28.0/28.3
AA-06	55-56.5	D5856	Sample Linear	21.0	1.64E-07	8.0	21.0	5.97/5.97	5.08/5.08	81.9/83.5	40.9/36.2
AA-06	60-61.5	D5856	Sample Linear	23.0	1.64E-08	8.7	23.0	5.08/5.05	4.85/4.85	90.0/90.5	29.9/28.2
AA-09-OW	55-56.5	D5856	Sample Linear	21.0	2.80E-08	9.3	21.0	5.08/5.08	4.85/4.85	84.1/84.1	35.1/36.5
AA-09-OW	70-71.5	D5856	Sample Linear	27.0	3.96E-07	5.7	27.0	5.08/5.08	4.85/4.85	63.2/62.6	59.3/60.1
AA-08-OWB	35-36.5	D5856	Sample Linear	13.4	1.02E-03	10.7	13.4	5.08/5.08	4.85/4.85	119.1/119.1	9.7/14.9
AA-08-OW	15-16.5	D5856	Sample Linear	6.0	2.41E-03	2.2	6.0	5.08/5.08	4.85/4.85	114.3/114.3	14.5/14.7
AA-08-OW	40-41.5	D5856	Sample Linear	15.0	1.33E-03	4.3	15.0	5.08/5.08	4.85/4.85	116.1/116.1	15.5/16.5
B-1	65-66.5	D5856	Sample Linear		1.74E-03	3.9	25.0	5.08/5.08	4.88/4.88	110.0/112.3	15.8/16.7
B-1	95-96.5	D5856	Sample Linear	36.0	1.04E-07	10.7	36.0	5.08/5.08	4.85/4.85	64.4/65.1	59.0/58.9
B-2	60-61.5	D5856	Sample Linear	22.9	4.40E-08	14.2	22.9	5.08/4.57	4.85/4.85	93.3/108.1	29.5/20.2
B-2	90-91.5	D5856	Sample Linear	34.4	1.58E-07	9.9	34.4	5.08/5.08	4.85/4.85	80.2/81.0	40.3/42.5
B-3	55-56.5	D5856	Sample Linear		1.75E-04	10.4	21.0	5.08/5.08	4.85/4.85	112.7/113.9	17.0/18.5
B-3	75-75.6	D5856	Sample Linear	29.0	2.72E-08	9.1	29.0	5.08/5.08	4.85/4.85	81.9/81.9	38.3/38.8
B-4	35-36.5	D5856	Sample Linear		6.64E-04	8.1	13.4	5.08/5.08	4.85/4.85	103.2/104.3	25.7/23.2
B-4	80-81.5	D5856	Sample Linear	30.5	1.15E-07	8.3	30.5	5.08/5.03	4.85/4.85	82.9/80.4	34.8/34.5

Table 11 MOISTURE CONTENT OF SOIL
Project Name: BMI Aquifer Test
Henderson, Nevada
Project Number: 83173

Sample Number	<u>Location</u>	Sample Depth (ft)	ASTM Test Method	Tare Weight of Pan (grams)	Wet Weight of Sample & Tare (grams)	Dry Weight of Sample & Tare (grams)	Weight of Moisture (grams)	Dry Weight of Sample (grams)	Percent Moisture
29393	B-1	60	D-2216	433.1	3708.8	3102.8	606.0	2669.7	22.7
29393	B-1	93 - 93.5	D-2216	536.3	1361.0	1068.0	293.0	531.7	55.1
29396	B-2	60	D-2216	538.7	1082.1	948.5	133.6	409.8	32.6
29396	B-2	94.5 - 95	D-2216	608.2	1280.3	1092.2	188.1	484.0	38.9
29392	B-3	59.5 - 60	D-2216	522.7	1012.7	837.7	175.0	315.0	55.6
29392	B-3	72.5	D-2216	231.2	625.8	515.3	110.5	284.1	38.9
29395	B-4	37.5	D-2216	239.0	475.2	409.7	65.5	170.7	38.4
29402	B-4	46 - 47	D-2216	439.0	2360.5	2072.3	288.2	1633.3	17.6
29402	B-4	76 - 77	D-2216	33.8	163.4	132.5	30.9	98.8	31.2
29402	AA-09-OW	57.5 - 58	D-2216	392.9	886.7	665.4	221.2	272.6	81.2
29402	AA-09-OW	66 - 67	D-2216	438.4	1208.9	904.7	304.2	466.3	65.2
29403	AA-20-OW	34 - 35	D-2216	203.3	469.5	403.2	66.3	199.9	33.1
29403	AA-20-OW	45 - 46	D-2216	179.3	680.0	562.7	117.3	383.4	30.6
29401	AA-06	51 - 52.5	D-2216	575.8	920.6	843.8	76.8	268.0	28.7
29401	AA-06	61.5 - 62	D-2216	198.4	294.0	268.2	25.8	69.8	36.9
29404	AA-08-OWA	13 - 15	D-2216	530.6	1784.5	1616.3	168.2	1085.7	15.5
29404	AA-08-OWA	35 - 37	D-2216	369.4	1500.6	1371.7	128.9	1002.3	12.9

Table 11 MOISTURE CONTENT OF SOIL

Project Name: BMI Aquifer Test Henderson, Nevada Project Number: 83173

Sample Number	Location	Sample Depth (ft)	ASTM Test Method	Tare Weight of Pan (grams)	Wet Weight of Sample & Tare (grams)	Dry Weight of Sample & Tare (grams)	Weight of Moisture (grams)	Dry Weight of Sample (grams)	Percent Moisture
29413	AA-08-OWB	30 - 32.5	D-2216	387.0	2495.4	2304.6	190.8	1917.6	9.9

Table 12 TOTAL ORGANIC CARBON Henderson, Nevada Project Name: BMI Aquifer Test Project Number: 83173

Sample Number	<u>Location</u>	Sample Type	ASTM Test Method	Depth (ft)	Organic Carbon
29393	B-1	Soil	2974	60-62.5	2.10%
29393	B-1	Soil	2974	93-93.5	3.00%
29396	B-2	Soil	2974	60	2.30%
29396	B-2	Soil	2974	94.5-95.0	2.00%
29392	B-3	Soil	2974	59.5-60.0	6.30%
29392	B-3	Soil	2974	72.5	2.60%
29395	B-4	Soil	2974	37.5	3.30%
29402	B-4	Soil	2974	46-47	1.50%
29402	B-4	Soil	2974	76-77	6.80%
29402	AA-09-OW	Soil	2974	57.5-58.0	4.10%
29402	AA-09-OW	Soil	2974	66-67	4.20%
29403	AA-20-OW	Soil	2974	34-35	1.60%
29403	AA-20-OW	Soil	2974	45-46	4.50%
29401	AA-06	Soil	2974	51-52.5	4.00%
29401	AA-06	Soil	2974	61.5-62.0	3.70%
29404	AA-08-OWA	Soil	2974	13-15	0.70%
29404 29413	AA-08-OWA AA-08-OWB	Soil Soil	2974 2974	35-37 30-32.5	0.70% 1.40%

Table 13 PARTICLE-SIZE ANALYSIS of SOILS
Project Name: BMI Aquifer Test
Henderson, Nevada
Project Number: 83173

Sample Identification	ASTM Test Method	<u>uscs</u>	Specific Gravity	Gravel, %	Sand, %	Silt, %	Clay, %
Boring B-2 @ 60'; S-29396 @ 60.0-65.0'	D422-02	ML	2.68	0	8	60	32
Boring B-2 @ 60-62.5'; S-29393 @ 60.0-65.0'	D422-02	SM	2.72	34	37	27	2
Boring B-2 @ 93-93.5'; S-29393 @ 90.0-95.0'	D422-02	ML	2.70	0	5	65	30
Boring B-2 @ 94.5-95'; S-29396 @ 90.0-95.0'	D422-02	ML	2.52	0	1	67	32
Boring B-3 @ 59.5-60'; S-29392 @ 55.0-60.0'	D422-02	ML	2.64	0	33	57	10
Boring B-3 @ 72.5'; S-29392 @ 70.0-75.0'	D422-02	ML	2.84	0	15	55	30
Boring B-4 @ 37.5'; S-29395 @ 35.0-40.0'	D422-02	ML	2.68	2	20	59	19
Boring B-4 @ 46-47'; S-29402 @ 45.0-47.5'	D422-02	SM	2.71	21	50	28	1
Boring B-4 @ 76-77'; S-29402 @ 75.0-80.0'	D422-02	ML	2.67	29	15	50	6
Boring AA-09-OW @ 57.5-58'; S-29402 @ 55.0-60.0'	D422-02	ML	2.67	1	17	56	26
Boring AA-09-OW @ 66-67'; S-29402 @ 65.070.0'	D422-02	ML	2.60	2	24	62	12
Boring AA-09-OW @ 66-67'; S-29413 @ 30.0-35.0'	D422-02	GM	2.73	46	22	30	2
Boring AA-20-OW @ 34-35'; S-29403 @ 30.0-35.0'	D422-02	ML	2.59	0	16	64	20
Boring AA-20-OW @ 45-46'; S-29403 @ 45.0-50.0'	D422-02	ML	2.70	0	12	75	13
Boring AA-06 @ 51-52.5'; S-29401 @ 50.0-55.0'	D422-02	ML	2.85	14	18	51	17
Boring AA-06 @ 61-62.5'; S-29401 @ 60.0-65.0'	D422-02	ML	2.85	0	3	71	26
Boring AA-08-OWA @ 13-15'; S-29404 @ 10.0-15.0'	D422-02	SM	2.73	21	50	28	1
Boring AA-08-OWA @ 35-37'; S-29404 @ 35.0-40.0'	D422-02	SM	2.73	16	54	25	5

Table 14 SPECIFIC GRAVITY OF COARSE AND FINE AGGREGATE

Project Name: BMI Aquifer Test Henderson, Nevada Project Number: 83173

Sample Number	<u>Location</u>	Sample Depth (ft)	ASTM Test Method	Dry Weight of Sample	SSD Weight of Sample	Weight SSD Under Water	Bulk Specific Gravity	Bulk SSD	Apparent Specific Gravity	Absorption
29393	B-1	60 - 62.5	127 & 128	5199.9	5366.5	3202.8	2.403	2.48	2.604	3.2
29402	B-4	45 - 46	127 & 128	1979.4	2046.8	1229.8	2.423	2.505	2.641	3.4
29404	AA-08-OWA	13 - 15	127 & 128	2132.5	2225	1327	2.375	2.478	2.647	4.3
29404	AA-08-OWA	35 - 37	127 & 128	1185.7	1231.1	737.3	2.401	2.493	2.644	3.8
29413	AA-08-OWB	30 - 32.5	127 & 128	6413.6	6636.3	3989.3	2.423	2.507	2.646	3.5

Table 15 SPECIFIC GRAVITY OF SOIL Project Name: BMI Aquifer Test Henderson, Nevada Project Number: 83173

Sample Number	<u>Location</u>	Sample Depth (ft)	ASTM Test Method	Water Density at Ta	Water Density at Tb	K Factor at Tb	Ma at Tb	Specific Gravity at Tb	Specific Gravity at 20 C
20202	D 4	60 60 5	D 054	0.00704	0.0004	0.0000	224 0227200	0.704700707	0.704404007
29393	B-1	60 - 62.5	D-854	0.99761	0.9981	0.9999	221.9237309	2.724703737	2.724431267
29393	B-1	93 - 93.5	D-854	0.99761	0.99808	0.99987	221.124154	2.701271186	2.700920021
29396	B-2	60	D-854	0.99761	0.99806	0.99985	221.4440865	2.657492355	2.657093731
29396	B-2	94.5 - 95	D-854	0.99764	0.99799	0.99979	224.5844925	2.517523364	2.516994685
29392	B-3	59.5 - 60	D-854	0.99812	998.31	0.9999	497444.2109	2.637698413	2.637434643
29392	B-3	72.5	D-854	0.99761	0.99797	0.99977	221.8590676	2.842801556	2.842147712
29393	B-4	37.5	D-854	0.99764	0.99806	0.99985	224.6093952	2.680569185	2.6801671
29402	B-4	45 - 46	D-854	0.99761	0.99799	0.99979	221.4092286	2.71252015	2.711950521
29402	B-4	76 - 77	D-854	0.99812	0.9981	0.9999	220.9300308	2.673448627	2.673181282
29402	AA-09-OW	57.5 - 58	D-854	0.99764	0.99797	0.99977	224.5645248	2.589772096	2.589176448
29402	AA-09-OW	66 - 67	D-854	0.99761	0.99795	0.99974	221.8491194	2.603917301	2.603240283
29403	AA-20-OW	34 - 35	D-854	0.99812	0.99831	1.0001	224.4947264	2.591293047	2.591552177
29403	AA-20-OW	45 - 46	D-854	0.99761	0.99799	0.99979	221.4092286	2.703640501	2.703072736
29401	AA-06	51 - 52.5	D-854	0.99761	0.99806	0.99985	221.4440865	2.837549185	2.837123553
29401	AA-06	61.5 - 62	D-854	0.99814	0.99804	0.99983	221.630259	2.721083939	2.720621355
29404	AA-08-OWA	13 - 15	D-854	0.99814	0.99831	1.0001	221.7645682	2.725062172	2.725334678
29404	AA-08-OWA	34 - 37	D-854	0.99806	0.99831	1.0001	224.53462	2.726701571	2.726974241
29413	AA-08-OWB	30 - 32.5	D-854	0.99812	0.99833	1.00012	221.0446766	2.72754329	2.727870595

Groundwater Level Changes in MCF-06B and MCF-06C July, 2007

Drawn By: G. Wittman

Groundwater Changes in Monitoring
Wells MCF-06B and MCF-06C June, 2007.

Revised By:
Checked By: G. Carter
Date: 9/15/07 Approved By:
Drawn By: G. Wittman

Groundwater Changes in Monitoring
Wells MCF-06B and MCF-06C June, 2007.

Implementation of the Revised Aquifer Testing Work Plan
BMI Common Area Eastside
Henderson, Nevada

File Name:

Project No: 83173

2315 S. Cobalt Point Way Meridian, Idaho 89642 (208) 893-9700 Www.kleinfelder.com

KLEINFELDER

Figure

2

Water Level Changes at Monitoring Well site AA-08, July 2007

File Name:

Project No: 83173

KLEINFELDER Figure

2315 S. Cobalt Point Way Meridian, Idaho 89642 (208) 893-9700 Www.kleinfelder.com

5

APPENDIX A

BORING LOGS

Henderson, NV

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

60

DRILLING LOG Well No. AA-08-EW

BRC Aquifer Testing Project Name:

Start Date: 6/5/07 End Date: 6/5/07

Total Hole Depth (ft):

Logged By: Davis Checked By: G. Carter Permit No.:

Project No: 83173 **BRC** Client:

Site Location:

Drilling Company:

Drill Rig Type:

Drilling Method:

Hole Diameter (in): 8 Well Diameter (in): 4 **Boart Longyear** B.L. - GP24-300RS Water Level (Initial, Ft): 11 Roto-Sonic Screen Length (ft): 10-60

> Ground Surface Elev.: 1578.39 feet NAVD88

Sampling Method: Continuous Core Note: Screened interval crosses QaL/Muddy Creek Formation Contact PID Headspace (ppm) Penetration Depth (feet) Blows / 6" Graphic Soil / Geologic Sample Well Completion Log Description No. Details Locking Stove-Pipe Monument w/ Concrete Vault and Ballards. 3.1' Stick-up SILTY SAND (SM): Light Brown Bentonite chip seal WELL GRADED SAND (SW/SM): 4" Diameter Schedule 40 PVC Brown With Gravel Casing, 0.020" Slot Well 10-Screen WELL GRADED SAND (SW/SC): With Clay and gravel 20 #10/20 Colorado Silica Sand WELL GRADED GRAVEL (GW/GC): With sand and clay, cobbles 30 WELL GRADED SAND WITH GRAVEL AND CLAY (SC): Medium to coarse sand, medium to coarse grained gravel

Roto-Sonic

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

60

DRILLING LOG Well No. AA-08-EW

BRC Aquifer Testing Project Name:

Start Date: 6/5/07 Henderson, NV End Date: 6/5/07

Logged By: Davis Checked By: G. Carter

Permit No.:

Project No: 83173 **BRC** Client:

Site Location:

Drilling Company:

Drill Rig Type:

Drilling Method:

Total Hole Depth (ft): Hole Diameter (in): 8 **Boart Longyear** Well Diameter (in): 4 B.L. - GP24-300RS Water Level (Initial, Ft): 11

Screen Length (ft): 10-60

Sampling Method: Continuous Core

Ground Surface Elev.: 1578.39 feet NAVD88

8

6/4/07

10-60

DRILLING LOG Well No. AA-08-OWA

BRC Aquifer Testing Project Name:

Henderson, NV

End Date: 6/4/07 Total Hole Depth (ft): 60

Start Date:

Logged By: Davis Checked By: G. Carter Permit No.:

Project No: 83173 **BRC** Client:

Site Location:

Drilling Company: **Boart Longyear** Drill Rig Type: B.L. - GP24-300RS Drilling Method: Roto-Sonic

2 Well Diameter (in): Water Level (Initial, Ft): 11

Hole Diameter (in):

Screen Length (ft): Ground Surface Elev.: 1577.90 feet NAVD88

Henderson, NV

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

60

DRILLING LOG Well No. AA-08-OWA

BRC Aquifer Testing Project Name:

Start Date: 6/4/07 End Date: 6/4/07 Total Hole Depth (ft):

Logged By: Davis Checked By: G. Carter

Permit No.:

Project No: 83173 Client:

Site Location:

Drilling Company:

Drill Rig Type:

Drilling Method:

BRC Hole Diameter (in): 8 2 **Boart Longyear** Well Diameter (in): B.L. - GP24-300RS Water Level (Initial, Ft): 11 Roto-Sonic Screen Length (ft): 10-60

Sampling Method: Continuous Core Ground Surface Elev.: 1577.90 feet NAVD88

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. AA-08-OWB

Project Name: Site Location:

BRC Aquifer Test

Henderson, NV

Project No: 83173 Client: BRC

Drilling Company:

Boart Longyear

B.L. - GP24-300RS Drill Rig Type: Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Start Date: 6/5/07

End Date: 6/5/07

Total Hole Depth (ft): 50 Hole Diameter (in): 8 Well Diameter (in): 2

Water Level (Initial, Ft): 10.5 10-50 Screen Length (ft):

Ground Surface Elev .: 1577.38 feet NAVD88

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. AA-08-OWB

Project Name: Site Location:

BRC Aquifer Test Henderson, NV

Start Date: End Date:

6/5/07 6/5/07

50

8

Logged By: Davis

Project No:

Client:

83173

BRC

Hole Diameter (in):

Checked By:G. Carter

Drilling Company: Drill Rig Type:

Boart Longyear

Well Diameter (in): 2 Permit No .:

Drilling Method:

B.L. - GP24-300RS Roto-Sonic

Water Level (Initial, Ft): 10.5 Screen Length (ft):

Total Hole Depth (ft):

10-50

Sampling Method: Continuous Core

Ground Surface Elev .: 1577.38 feet NAVD88

KLEINFELDER

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

70

30-70

DRILLING LOG Well No. AA-09-OW

Project Name: BRC Aquifer Test Site Location: Henderson, NV

 Start Date:
 6/1/07

 End Date:
 6/1/07

Total Hole Depth (ft):

Screen Length (ft):

Logged By: Davis Checked By:G. Carter

Permit No.:

Project No: 83173
Client: BRC

Drilling Company:

Drill Rig Type:

BRC Hole Diameter (in): 8
Boart Longyear Well Diameter (in): 2
B.L. - GP24-300RS Water Level (Initial, Ft): 32

Drilling Method: Roto-Sonic
Sampling Method: Continuous Core

Ground Surface Elev.: 1692.90 feet NAVD88

(feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)	Note: Screened in	nterval crosses QaL/Muddy Creek Formation Conta Well Completion Details
0 -		SILTY SAND (SM): [FILL]						
-		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel, Corase Sands						
10		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand						
10		SILTY SAND (SM): Reddish Brown, Silty Sand with Gravel and Coarse Sand						Bentonite chip seal
-	• • • • • •	SILTY GRAVEL (GM): Reddish Brown, Silty Gravel with Sand						
- 20— - -		SILTY SAND (SM): Reddish Brown, Silty Sand with Gravel						
-		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand						
30-		SILTY SAND (SM): Reddish Brown, Silty Sand with Gravel						2" diameter Schedule 40 PVC casing
-		CLAYEY SAND (SC): Reddish Brown, Clayey Sand/Silty Sand with Gravel						
-		SILTY SAND (SM): Reddish Brown, Silty Coarse Sand with Gravel						

70

DRILLING LOG Well No. AA-09-OW

BRC Aquifer Test Project Name: Henderson, NV Site Location:

Start Date: 6/1/07 End Date: 6/1/07

Total Hole Depth (ft):

Logged By: Davis Checked By: G. Carter Permit No.:

Project No: 83173 **BRC** Client:

Drilling Company:

Drill Rig Type:

Drilling Method:

Hole Diameter (in): 8 2 **Boart Longyear** Well Diameter (in): B.L. - GP24-300RS Water Level (Initial, Ft): 32 Roto-Sonic Screen Length (ft): 30-70

> Ground Surface Elev.: 1692.90 feet NAVD88

Sampling Method: Continuous Core Note: Screened interval crosses QaL/Muddy Creek Formation Contact PID Headspace (ppm) Penetration Recovery Depth (feet) Blows / 6" Graphic Soil / Geologic Sample Well Completion Description No. Log Details #10/20 Colorado Silica Sand SANDY CLAY (CL): Reddish Brown-Brown, Sandy Clay, Fine Sand 50 2" diameter, 0.020" slot, Schedule 40 PVC screen CLAY (CL): Light Greyish Brown Clay with Sand, Trace Gravel 60 #10/20 Colorado Silica Sand SANDSTONE (SS): Muddy Creek Formation (TMC), Light Brown-Brown, Silty/Clayey Sandstone 70

55

8

6/02/07

DRILLING LOG Well No. AA-20-OW

Project Name: Site Location:

BRC Aquifer Testing

Henderson, NV

Project No: 83173

Client: Drilling Company:

BRC **Boart Longyear**

Drill Rig Type: Boart Longyear Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Start Date:

End Date: 6/02/07

Total Hole Depth (ft): Hole Diameter (in):

Well Diameter (in): 2 Water Level (Initial, Ft): 24 15-55

Screen Length (ft):

Ground Surface Elev .: 1625.69 feet NAVD88

Logged By: Davis Checked By:G. Carter

Depth (feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)		Well Completion Details
0	0	SILTY GRAVEL (GM): Reddish brown Silty Gravel with Sand						
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel, Medium to Coarse Sand Fine to Medium Grained Gravels			a:			Bentonite chip seal
10-		SILTY GRAVEL (GM): Reddish brown Silty Gravel with Sand						
		SILTY SAND (SM): Reddish brown Silty Sand with Gravel, Fine to Medium Grained sand, Fine to Medium grained Gravels						2" diameter Schedule 40 PVC casing, 0.020" slot well screen
20		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand, Coarse Gravel						
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel						
		CLAY (CL): Yellowish Green Gypsyferous Clay						
30-		CLAYEY SILT (ML): Redish Brown-Brown Clayey Sand/Silt						
= =			A-20-OW-30-31				E	#10/20 Colorado Silica Sand

8

2

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. AA-20-OW

Project Name: Site Location:

BRC Aquifer Testing

Henderson, NV

Project No: 83173 BRC

Client: Drilling Company:

Boart Longyear

Drill Rig Type: **Boart Longyear** Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Start Date:

6/02/07

End Date: 6/02/07 Total Hole Depth (ft): 55

Hole Diameter (in): Well Diameter (in):

Water Level (Initial, Ft): 24 Screen Length (ft): 15-55

Ground Surface Elev .: 1625.69 feet NAVD88

Logged By: Davis Checked By: G. Carter

DRILLING LOG Well No. B-1

Project Name: Site Location:

BRC Aquifer test

Henderson, NV

Project No: 83173 Client: BRC

Drilling Company: **Boart Longyear** B.L. - GP24-300RS Drill Rig Type: Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Start Date: 5/30/07 End Date: 5/31/07 Total Hole Depth (ft): 100

Hole Diameter (in): 8 Well Diameter (in): NA Water Level (Initial, Ft): 52.5 Screen Length (ft): NA Ground Surface Elev .: UNK Logged By: Davis Checked By:G. Carter

(feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)	Well Completion Details
0		FILL: Reddish Brown Sand and Gravel			ш	1.13	
0		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel (Subangular/Subrounded)					
		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand					
		SILTY SAND (SM): Reddish Brown Silty Sands with Gravels					
-	0	SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand					
20		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel					
1 1		SILTY GRAVEL (GM): Silty Gravel with Sand					
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel					
-		SILTY GRAVEL (GM): Silty Gravel with Sand					
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel					
30		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand					

8

NA

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. B-1

Project Name: Site Location:

BRC Aquifer test

Henderson, NV

Project No: 83173 **BRC** Client:

Drilling Company: Boart Longyear Drill Rig Type:

B.L. - GP24-300RS

Roto-Sonic Drilling Method: Sampling Method: Continuous Core Start Date: 5/30/07 End Date: 5/31/07 Total Hole Depth (ft): 100

Hole Diameter (in): Well Diameter (in):

Water Level (Initial, Ft): 52.5 Screen Length (ft): NA Ground Surface Elev .: UNK Logged By: Davis Checked By:G. Carter

(feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)	Well Completion Details
10		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel, Sub-angular/Sub-rounded Gravel (15-30%)					
	0	SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand					
-		SILTY SAND (SM): Silty Sand with Gravel					
		SILTY GRAVEL (GM): Silty Gravel with Sand					
50		SILTY SAND (SM): Silty Sand with Gravel, Coarse Sand					
		SILTY CLAY (CL): Light Greyish Green Silty Clay					
80-		SILTY CLAY (CL): Brown Silty Clay					
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel					
		SANDY SILT (ML): Light Greyish Green Sandy Silty, Trace Clay					
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel, Coarse Sand	B-1-65-66.5				
70-							

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. B-1

Project Name: Site Location:

Client:

BRC Aquifer test

Henderson, NV

Project No: 83173

Drilling Company:

Boart Longyear

Drill Rig Type: B.L. - GP24-300RS Drilling Method: Roto-Sonic

BRC

Sampling Method: Continuous Core

Start Date:

5/30/07 5/31/07

8

End Date: Total Hole Depth (ft): 100

Hole Diameter (in):

Well Diameter (in): NA Water Level (Initial, Ft): 52.5 Screen Length (ft): NA

Ground Surface Elev .: UNK

Logged By: Davis Checked By:G. Carter

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

5/30/07

5/31/07

100

8

NA

DRILLING LOG Well No. B-2

Project Name: Site Location:

BRC Aquifer test

Henderson, NV 83173

Project No: Client: BRC

Drilling Company: Drill Rig Type:

Boart Longyear

Roto-Sonic Drilling Method: Sampling Method: Continuous Core

B.L. - GP24-300RS

Total Hole Depth (ft):

Start Date:

End Date:

Hole Diameter (in): Well Diameter (in): Water Level (Initial, Ft): 52.5

Screen Length (ft): NA Ground Surface Elev .: UNK Logged By: Davis/Hall Checked By:G. Carter

DRILLING LOG Well No. B-2

Project Name: Site Location:

BRC Aquifer test Henderson, NV

Start Date: End Date:

5/30/07 5/31/07 Logged By: Davis/Hall

Project No:

83173

Total Hole Depth (ft): Hole Diameter (in):

Checked By: G. Carter

Client: Drilling Company:

BRC **Boart Longyear**

Well Diameter (in):

Permit No .:

Drill Rig Type: Drilling Method: B.L. - GP24-300RS

NA Water Level (Initial, Ft): 52.5

100

8

Sampling Method: Continuous Core

Roto-Sonic

Screen Length (ft): NA

Ground Surface Elev .: UNK

DRILLING LOG Well No. B-2

Project Name: Site Location:

BRC Aquifer test

Henderson, NV

Project No: 83173

Client: Drilling Company:

BRC

Drill Rig Type:

Boart Longyear B.L. - GP24-300RS

Drilling Method:

Roto-Sonic

Sampling Method: Continuous Core

Start Date: End Date:

5/30/07

5/31/07

Total Hole Depth (ft): Hole Diameter (in):

100 8

Well Diameter (in):

NA Water Level (Initial, Ft): 52.5

Screen Length (ft):

NA

Ground Surface Elev.: UNK Logged By: Davis/Hall Checked By:G. Carter

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. B-3

Project Name: Site Location:

BRC Aquifer test Henderson, NV

Start Date: End Date:

5/29/07 5/29/07

80

Logged By: Davis

Project No:

Drilling Company:

Drill Rig Type:

Client:

83173

BRC

Boart Longyear

B.L. - GP24-300RS Roto-Sonic

Drilling Method: Sampling Method: Continuous Core Hole Diameter (in): 8 Well Diameter (in): NA

Total Hole Depth (ft):

Water Level (Initial, Ft): UNK Screen Length (ft): NA

Ground Surface Elev .: UNK

Checked By:G. Carter

DRILLING LOG Well No. B-3

Project Name: Site Location:

BRC Aquifer test

Start Date: Henderson, NV End Date:

5/29/07 5/29/07 Logged By: Davis

Project No:

83173

Total Hole Depth (ft):

Checked By:G. Carter

Client:

BRC

Hole Diameter (in):

Drilling Company:

Boart Longyear

Well Diameter (in):

Permit No .:

Drill Rig Type: Drilling Method: B.L. - GP24-300RS Roto-Sonic

Water Level (Initial, Ft): UNK

NA

80

8

Screen Length (ft):

NA

Sampling Method: Continuous Core

Ground Surface Elev .: UNK

Penetration / Recovery PID Headspace (ppm) Blows / 6" Soil / Geologic Graphic Sample Well Completion Description No. Details Log 40 SILTY CLAY (CL): Light Greyish Green with Abundant Gypsum (25%) 50 CLAYEY SAND (SC): Reddish Brown to Greyish Green, Very Moist B-3-55-56.5 60 SANDSTONE (SS): Muddy Creek B-3-70-71.5 Formation (TMC), Reddish Brown

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094 Well No. B-3

80

8

NA

DRILLING LOG

Project Name: Site Location:

BRC Aquifer test Henderson, NV

Start Date: End Date:

5/29/07 5/29/07 Logged By: Davis Checked By:G. Carter

Project No:

Client:

83173 BRC

Hole Diameter (in):

Permit No .:

Well Completion Details

Drilling Company: Boart Longyear Drill Rig Type:

Well Diameter (in): Water Level (Initial, Ft): UNK

Total Hole Depth (ft):

Drilling Method:

B.L. - GP24-300RS Roto-Sonic

Screen Length (ft):

NA

Sampling Method: Continuous Core

Ground Surface Elev .: UNK

Depth (feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)
1 4				1974		
-						
				100		
-						
				1		
80	********			BALL OF		
00				1000000		

DRILLING LOG Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094 Well No. B-4

Project Name: Site Location:

BRC Aquifer test Henderson, NV

Start Date: End Date:

5/31/07 6/1/07

Logged By: Davis

Project No:

83173

Total Hole Depth (ft):

Checked By: G. Carter

Client:

BRC

Hole Diameter (in):

Drilling Company:

Boart Longyear

Well Diameter (in):

Permit No .:

Drill Rig Type: Drilling Method: B.L. GP24-300RS

Water Level (Initial, Ft): UNK

Roto-Sonic

Screen Length (ft):

NA

NA

90

8

Sampling Method: Continuous Core

Ground Surface Elev .: UNK

(feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)	Well Completion Details
0		SILTY SAND (SM): Reddish Brown, with Gravel					
	0	SILTY GRAVEL (GM): with sand					
		SILTY SAND (SM): Reddish Brown with gravel					
0	0000000	CLAYEY SAND (SC): Reddish Brown, Trace Gravel				H	
		SILTY SAND (SM): Reddish Brown with Gravel					
36	latatatatatata	CLAYEY SAND (SC): Reddish Brown, Trace Gravel					
0		SILTY SAND (SM): Reddish Brown, With gravel					
N. O. W.		CLAYEY SAND (SC): Reddish Brown, Trace gravel					
		SILTY SAND (SM): Reddish Brown, with gravel					
80-		CLAYEY SAND (SC): Reddish Brown					
0 10 3							
1							
			B-4-35-36.5	The life			

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094 Well No. B-4

DRILLING LOG

Project Name: Site Location:

BRC Aquifer test

Henderson, NV

Project No: 83173 Client:

BRC Drilling Company: **Boart Longyear**

Drill Rig Type: Drilling Method:

B.L. GP24-300RS Roto-Sonic

Sampling Method: Continuous Core

Start Date:

End Date:

5/31/07 6/1/07

90

8

NA

Total Hole Depth (ft): Hole Diameter (in):

Well Diameter (in):

Water Level (Initial, Ft): UNK Screen Length (ft):

Logged By: Davis Checked By:G. Carter

Permit No .:

NA Ground Surface Elev .: UNK

Depth (feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)	Well Completion Details
40		CLAYEY SAND/CLAYEY SAND (SC/CL): Yellowish Green					
		SILTY SAND (SM): Reddish Brown, with gravel					
50							
60		SANDY CLAY (CL): Yellowish Green, Trace Gypsum					
70-							

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. B-4

Project Name:

BRC Aquifer test Henderson, NV

Start Date:

5/31/07 6/1/07

90

8

NA

Site Location: Project No:

Client:

83173

BRC **Boart Longyear**

Drilling Company: Drill Rig Type:

B.L. GP24-300RS

Drilling Method:

Roto-Sonic

Sampling Method: Continuous Core

End Date: Total Hole Depth (ft): Hole Diameter (in):

Well Diameter (in): Water Level (Initial, Ft): UNK

Screen Length (ft):

NA

Ground Surface Elev .: UNK

Logged By: Davis Checked By:G. Carter

Well Completion

Details

PROJ	ECT:	BR	C A	Aqu	ifer Te	est	Lo	g of E	Boring	No.	AA-06			
BORIN	RING LOCATION:					GROUND S	URFACE EI	LEVATION AN	ND DAT	UM:				
DRILL	ING C	ONTF	RACTO	R:			6/03/0			6/03	FINISHED: 3/07			
DRILL	ING M	ETHO	DD:		Soni	C	TOTAL DEPTH (ft.): SCREEN INTER							
DRILL	ING E	QUIPI	MENT:				DEPTH TO WATER:	FIRST:	COMPL.	CASIN	G:			
SAMP	LING I	метн	OD:			Continuous Core	LOGGED BY							
HAMN	IER W	ER WEIGHT: DROP:				DROP:	RESPONSIBLE PROFESSIONAL: REG. NO. XXXX							
DEPTH (feet)	Sample No.	Sample 11	Blows/ ST Foot	OVM Reading	NAME stru	DESCRIPTION (USCS): color, moist, % by wt., plast. density cture, cementation, react. w/HCl, geo. inter.	/,			ILS AN	UCTION D/OR			
	San	San	Boc	Re	0	Surface Elevation: 8.51' MSL (NGVD29)			DRILLIN	NG REI	MARKS			
1-					: 0	SILTY GRAVEL (GM): Reddish Brown with sand	n, _							
3-						SILTY SAND (SM): Reddish Brown, w Gravel	ith _							
4- 5-														
6-					0		=							
7- 8-					0	GRAVEL (GW): Well Graded, with Sal	nd _							
9						and Silt								
10-							=							
11- 12-				3	:::		=							
13							=							
14-						SILTY SAND (SM): Reddish Brown, wi	th							
16-						Gravel								
17-														
18-				*).0									
20					> 5	WELL GRADED GRAVEL (GW-GM):	_							
21				3	0	Reddish Brown, with Silt and Sand	J							
22-					0									
24						CH TV CAND (CAN) WAS Crevel								
25						SILTY SAND (SM): With Gravel								
26 27				5	? : :	WELL GRADED GRAVEL (GW-GM):								
28					0	Reddish Brown, with Silt and Sand								
29														
30-						OUT CAND COM DIVING								
32					27	SILTY SAND (SM): Reddish Brown, wi Gravel	tn							
33														
34														
35				1										
36 ABC	Cons	sultar	nts		0		Pro	oject No. 8	5938.5888		Page 1 of 2			

PROJ	ECT:	BR	C A	qui	fer T	est			Log	g of B	oring	No.	AA-06
BORIN	NG LO	CATIC	ON:					GROU	ND SU	RFACE ELE	NATION AN	VD DAT	UM:
DRILL	ING C	ONTR	ACTOR	R:				6/0	START 3/07	ED:		6/03	FINISHED:
DRILL	ING M	ING METHOD: Sonic							TOTAL DEPTH (ft.): SCREEN INTERV				
DRILL	ING E	QUIPN	MENT:					DEPTH	OTH	FIRST:	COMPL.	CASIN	G:
SAMP	LING I	METH	OD:			Conti	nuous Core	LOGGE	ED BY:		INA		
HAMM			-				DROP:		Davis DNSIBL	S .E PROFESS	SIONAL:		REG. NO.
	S	AMPL	FS				DESCRIPTION				WELL O		XXXX
DEPTH (feet)	Sample No.	eldi	ws/	OVM	NAME stru	E (USCS) ucture, ce	color, moist, % by wt., plast. densit mentation, react. w/HCl, geo. inter.	ty,				ILS AN	D/OR
	San	Sample	Blows/ Foot	Re		Surface	Elevation: 8.51' MSL (NGVD29)				DRILLIN	NG REI	MARKS
37- 38- 39- 40-				3	0. D	Into	WELL GRADED GRAVEL (GW-GM) erbedded with Silt and Sand. And S Sand with Gravel	i: Silty					
41 42 43 44 45 46						SI	LTY SAND (SM): Reddish Brown, w Gravel	vith					
47 48 49 50 51 52 53 54 55 56	AA-06-50-51.5					9	CLAYEY SANDSTONE (SS): Muddy Creek Formation (TMC), Reddish Brown/Brown. Gypsiferous Clayey Sandstone at 56 feet.						
57 58 59 60 61 62 63 64 65	AA-06-60-61.5												
ABC	Cons	sultar	nts						Proj	ect No. 59	38.5888		Page 2 of 2

APPENDIX B

SOIL SAMPLE PHYSICAL TESTING REPORTS

Project Name: BRC Aquifer Testing	Client: BRC		By: Doug	Davis
Project Number: 83173 Task: 4	Date: 5/30/0	7	Date Due:	
	B-1	8-1	B-1	Boring Number
	35-5	36. 82.	is-	Depth
		X	X	Water Content (ASTM 2216)
			C.	M からく/ DENS . Dry Bulk Density (ASTM D2937)
		$X \perp$	B	じこれらこし Total Porosity (ASTM D2435)
				Flexible Wall (ASTM D5084) <u>OUTSIDE SERVICE</u>
				Rigid Wall (ASTM D2434) <u>OUTSIDE SERVICE</u>
		\times	X	Specific Gravity (ASTM D
		R		Specific Gravity (ASTM C127)
				Hydrometer (ASTM D422)
		X		Sieve Anysis (ASTM D422)
		X		ものと かへ ー (の +で AでLAら Total Organic Carbon OUTSIDE SERVICE (ATLAS)
	Shipped	Shipped	cuan	_
	5/3/	5/3/		Remarks
				29393

LABORATORY WORK ORDER

FOR ACCOUNTING USE ONLY

Date Entered

Entered By:

type of Material:

coin Comel toe Book

Project Manager. Sampled by:

Project No:	83173	Phase: \(\frac{4}{} \)	Sample Number:	SA	MPLE STATUS	Date Sampled:	5130107
Project Name:	BRC AquiAn	Tast	29393		Requested Test	Date Received:	
Client Name:	BRC			\boxtimes	Test in Progress	Date Needed:	
Client Ref./P.O.#:	58 8 1			\boxtimes	Test Completed	BilleCl One Out 75	6/18/07
Special Instruction	s:					Com pls785 Verified By:	4/20/01

	AS	PHALT 1	ESTING	
Usage	Qty.	99#	Status	
C123 Lt Wt Pieces/Agg		990715		
C127 Absorption/Gravity	3	19070S	1703	7
CAL 205 Crushed Part		990712		
(AL 227 Cleanness TST		990711		
Clay Lumps/Friabl Part C-142		990714		
D2726 Weight/Absorption Core		991110		
Extract Bitumin D1856, 2172.310		991102		
Flat/Elong Part/Sieve 119, 120		990713		
Hveem Stability/Set of 3		991147		
Ignition Oven Calibration		996156		
Injurious Organic Matter C-40		990701		
LA Rottler CAL131		990706		
Lottmun Test		991121		
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108		
Max Theoretical Specific Gravity D-2041		991112		
Methylene Blue Test		990132		
Microwave Asphalt Moist Content		996137		
Oil Content By Ignition Oven		996153		
Sand Equivalent C217		990308		
Specific Gravity C127/8 D854		990211		
Stabil Test/Premix Sample CAL 366		991104		
Unit Weight C29		990704		

MISC. OTHER					
Usage	Qty.	99#	Status		
Chloride Analysis		996020			
Corrosivity Analysis		991508			
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324			
pH Test		990319			
Sulfate Analysis		992090			
Unit Weight Fireproofing		991314			

CONCRETE	£ 1	AASONR	Y TESTIN	ND01
Usage	Qty.	99#	Status	_ ~
(942 Grout Strength (cylinder/prism strength)		990119		
Compressive Test 12x8x16 Prisms (12" width)		991005		410
Compressive Test 8x8x16 Prisms (8" width)		991003		LLWD
Compressive Test/Cored Spec		990809		00
Concrete Compressive Test		990803		
Drying Shrinkage (Set OF 3) C-157, CAL-530		990811		OS S
Flex and Strength/Concrete Beam		990806		
Mortar Strength C-109		990118		
S	OILS	TESTING	;	3.5
Usage	Qty	. 99#	Status	7 3 G
ASTM D1557 6" Method B, C and D	Τ	990104		
CBR 100% Compaction D1883, T180		990209		
Check Point	T	990106		 7 1 1
Collapse Potential		990614		
Consolidation W/O time Rate/6 LD D2435	1	990613		
Correct Oversize Material in Sample CAL301	Т	990203		
Direct Shear 1 Point		990608		
Direct Shear 3 Point		990609		
Harvard Miniature		992191		
Hydrometer Only	2	990305	_	
Moisture Determination Only	2	990317		
Moisture Determination/Unit Weight	1	990316		
Plasticity Index	7	990310		
Resistivity Analysis		990318		
R-Value/Untreated Material/Field Sample CAL 301		990201		
Sample Prep Materials		992508		
Sieve Analysis Wash #200 C117		990304		
Sieve Analysis/Course & Fine	2	990301		
Sulfate Sound (5) Sieve SZ C88		990708		
Swell Test FHA Specification (60 psi)		990312		Source: Supplier
Unconfined Comp/Inc Moist D2166		990601		50 50

Kleinfelder West, Inc. BM/BRC Project Project Number: 83173 Project Task: 4 Date: 5-30-0 Date Sampled: 5-30- Time: ULL Date Received: Boring: 5-1 Sample Depth: 60-65	<u>-0</u> 7 -		Received By:		
Property Analysis	Sample Number	Sample Type		Date Completed	
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974			-		
Dry bulk density ASTM D2937					
Calculated total porosity ASTM D2435					
Saturated Hydraulic Conductivity					
Flexible Well ASTM D5084			•		
Rigid Wall ASTM D2434					
Specific Grevity (Particle Density)			Date Shipped		
Fine (< 4.75 mm diameter material) ASTM D854				L	Sierra Testing Laboratories, Inc.
Coarse (> 4.75 mm diameter material) ASTM C127	V				5040 Robert J. Mathews Suite 1 El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet					
Standard Sieves with Wash ASTM D422			•		
Hydrometer (applicable when >5% fines) ASTM D422					
Total or Fractional Organic Carbon Analysis performed by Hali laboratory in Albuquerque, NM Walkley Black			Date Shipped		Half Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 505) 345-3975

Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: 4 Date: 5-30-00 Date Sampled: 5-30- Time: 11 (1 Date Received: 5-30- Boring: 5-1-66-5	<u>.೮</u> 7 —		Received By:		
Property Analysis	Sample Number	Sample Type		Date Completed	
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974			-	<u> </u>	
Dry bulk density ASTM D2937	•		_		
	•			[
Calculated total porosity ASTM D2435			-	L	
Saturated Hydraulic Conductivity	1				1-1
Flexible Wall ASTM D5084	-		-		
Rigid Wall ASTM D2434			-		
Specific Gravity (Particle Density)			Date Shipped		1
Fine (< 4.75 mm diameter material) ASTM D854				<u> </u>	Sierra Testing Laboratories, Inc.
					5040 Robert J. Mathews Suite 1
Coarse (> 4 75 mm diameter material) ASTM C127					El Dorado, CA 95762 (916) 939-3507
					(310) 335 3301
Particle size analysis (Wet					
Standard Sieves with Wash ASTM D422			-		
Hydrometer (applicable when >5% fines) ASTM D422			-		
Total or Fractional Organic Carbon Analysis performed by Half laboratory in Albuquerque, NM Walkley Black			Date Shipped		Hell Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 505) 345-3975

Kleinfelder West, Inc. BMMBRC Project Project Number: 83173 Project Task: 4 Date: 5-30-00 Date Sampled: 5-30 Time: ULL Date Received: 5-30 Boring: 8-1 Sample Depth: 90-95	<u>2-</u> 07 —		Received By:		
Property Analysis	Sample Number	Sample Type		Date Completed	
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974	<u>~</u>				
Dry bulk density ASTM D2937			•	<u></u>	
Calculated total porosity ASTM D2435					
Seturated Hydraulic Conductivity					
Flexible Wall ASTM D5084					
					
Rögid Walt ASTM D2434			•	L	
Specific Gravity (Particle Density)	· _		Date Shipped		
Fine (< 4 75 mm diameter material) ASTM D854			. []		Sierra Testing Laboratories, Inc.
					5040 Robert J. Mathews Suite 1 El Dorado, CA 95762
Coarse (> 4.75 mm diameter material) ASTM C127					(916) 939-3507
					(0.0,000
Particle size analysis (Wet	_				
Standard Sieves with Wash ASTM D422				L	
Hydrometer (applicable when >5% lines) ASTM D422					
Tydromator (approand arati rola inida) no i m wiew					
Total or Fractional Organic Carbon			Date Shipped		Half Environmental Analysis Laboratory (HEAL)
Analysis performed by Hall laboratory in	<u></u>				4901 Hawkins St NE # A
Aibuquerque, NM			·		Albuquerque, NM 87109
Walkley Black					505) 345-3975

Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: 4 Date: 5-3/-07 Date Sampled: 5:30-0 Time: JIII Date Received: Boring: 85-96-5	<u>-</u>	Received By:		
Property Analysis Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974	Sample Number Sample Typ	•	Date Completed	
Dry bulk density ASTM D2937 Calculated total porosity ASTM D2435		_ _		
Saturated Hydraulic Conductivity	_			
Flexible Wall ASTM D5084				
Rigid Wall ASTM D2434		- K		
Specific Gravity (Particle Density) Fine (< 4.75 mm diameter material) ASTM D854		Date Shipped		Sierra Teeting Laboratories, Inc.
Coarse (> 4.75 mm diameter material) ASTM C127		_ \		5040 Robert J. Mathews Suite 1 El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet		·		
Standard Sieves with Wash ASTM D422				
Hydrometer (applicable when >5% fines) ASTM D422		===		
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque, NM Walkley Black		Date Shipped		Hall Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 505) 345-3975

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR TESTING MATERIALS

LABORATORY NO:

14462(a)

DATE: June 13, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29393

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

ORGANIC CARBON LOCATION SAMPLE NO. DEPTH (feet) 29393 B-1 60-62.5 2.10%

LABORATORY MANAGER

PROJECT NAME: BRC AQUIFER TESTING

PROJECT NUMBER:

83173

LAB NUMBER:

29393

BORING:

B-1

DEPTH:

60 - 62.5'

DATE:

06/04/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

1	2	
221.68		A
719.09		В
22.7		C
280.73		D
220.95	0	ΞE
59.78		F
756.93		_]G
20.5		ΠН
	719.09 22.7 280.73 220.95 59.78 756.93	719.09 22.7 280.73 220.95 0 59.78 756.93

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta
Water Density at Tb
K Factor at Tb

0.99761	
0.9981	
0.9999	

Ma at Tb Sp Gr at Tb Sp Gr at 20 C

221.9237309	0
2.724703737	#DIV/0!
2.724431267	#DIV/0!

SPECIFIC GRAVITY AT 20 C

2.724431267

SPECIFIC GRAVITY OF COARSE AND FINE AGGREGATE ASTM 127 & 128

Job # => 83173

Lab Number => 29393

Project => #N/A

Date Sampled =>

Client => #N/A

Date Received =>

Phase =>

Sampled By =>

Sample Location => B-1 @ 60 - 62.5'

#N/A

Tested By => JLW

Reviewed By =>

COARSE AGGREGATE

Dry Wt. of Sample A=>	5199.9	
SSD Wt. of Sample B=>	5366.5	
Wt. SSD Under Water C=>	3202.8	Averages
Bulk Sp Gr. A/(B-C) =>	2.403	2.403
Bulk SSD B/(B-C) =>	2.480	2.480
Apparent Sp Gr A/(A-C) =>	2.604	2.604
Absorption ((B-A)/A)*100 =>	3.2	3.2

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29393
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By ≃>	NR
Sample Location =>	B-1 @ 60'	Tested By =>	JLW
i		Reviewed By ≂>	JH

_		_
Pan Label =>	DUDE	
Tare Weight of Pan =>	433.1	A
Wet Wt. of Sample & Tare =>	3708.8	В
Dry Wt. of Sample & Tare =>	3102.8	С
Weight of Moisture (B-C) =>	606.0	D
Dry Wt. of Sample (C-A) =>	2669.7	Ε
Percent Moisture (D/E)*100 =>	22.7	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B- 2 @ 60-62.5'; S-29393 @ 60.0 - 65.0'

June 7, 2007

Silty Sand with Gravel (SM)

Specific Gravity = 2.72

LL = ; PL = ; PI =

Gravel = 34%; Sand = 37%; Silt = 27%; Clay = 2%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	2	98
1" (25.0-mm)	4	96
1/2" (12.5-mm)	10	90
3/8" (9.5-mm)	15	85
#4 (4.75-mm)	34	66
#10 (2.00-mm)	59	41
#16 (1.18-mm)	63	37
#40 (425-μm)	68	32
#50 (300-µm)	69	31
#100 (150-μm)	70	30
#200 (75-μm)	71	29
Hydrometer Analysis		
33-μm		4
21-μm		4
12-μm		3
9-μm		3
6-µm		3
3.2 -μm		2
		1
Colloids (<1-μm)		1
. ,	S. STANDARD SIEVE NUMBERS	I HYDROMETER ANALYSIS
U. S. STANDARD SIEVE OPENING, in. U. S 3 2 1.5 l 1/2 3/8 4	S. STANDARD SIEVE NUMBERS 10 16 40 50 100 200	·
U. S. STANDARD SIEVE OPENING, in. U. S		·
U. S. STANDARD SIEVE OPENING, In. U. S. 3 2 1.5 I 1/2 3/8 4		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 1 1/2 3/8 4 100		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 1 1/2 3/8 4 100		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 1 1/2 3/8 4 100 • • • • • • • • • • • • • • • • • •		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 1 1/2 3/8 4 100 • • • • • • • • • • • • • • • • • •		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 1 1/2 3/8 4 100 • • • • • • • • • • • • • • • • • •		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 I 1/2 3/8 4 100		·
U. S. STANDARD SIEVE OPENING, In. 3 2 1.5 1 1/2 3/8 4 100		·
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 I 1/2 3/8 4 100		·
U. S. STANDARD SIEVE OPENING, In. 3 2 1.5 1 1/2 3/8 4 100		·

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J . Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR TESTING MATERIALS

LABORATORY NO:

14451(b)

DATE: June 6, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29393

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO. LOCATION DEPTH (feet) ORGANIC CARBON 29393 B-1 93-93.5 3.00%

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B- 2 @ 93-93.5'; S-29393 @ 90.0 - 95.0'

June 7, 2007

Silt (ML)

Specific Gravity = 2.70

LL = ; PL = ; PI =

Gravel = 0%; Sand = 5%; Silt = 65%; Clay = 30%

	e size			% R	etained		0	% Passing	
3" (75	5.0-mm)				0			100	•
	0. 0-mm)				0			100	
	" (37.5 - mm)				0			100	
	5.0-mm)				0			100	
	(12.5-mm)				0			100	
	(9.5-mm)				0			100 100	
	.75-mm) 2.00-mm)				0			100	
	1.18-mm)				0			100	
	425-μm)				1			99	
	300-μm)				2			98	
	(150-μm)				2			98	
	(75-µm)				5			95	
	rometer Ana	llvsis							
28-μn		. i.y 0.10						77	•
18-μn								69	
11-μn								61	
8-μm								58	
6-µm	I							48	
3.1-µi	.m							30	
Collo	oids (<1-µm)							15	
	U. S. STANDARD SIEVE	EOPENING, in. U.S.	STANDARD	SIEVE NUMBE	RS		HYDROM	ETER ANALYSIS	
	U. S. STANDARD SIEVE	I/2 3/8 4	STANDARI 10	SIEVE NUMBE	ERS 40 50 10	200	HYDROM	ETER ANALYSIS	
100						200	HYDROM	ETER ANALYSIS	•
100 90	3 2 1.5 1					200	HYDROM	ETER ANALYSIS	
	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	
90 80	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	
90 80	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	٠
90 80	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	•
90 80	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	•
90 80	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	•
90 80	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	•
90 80 70 60 50 40 30 20	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	•
90 80 70 60 50 40 30 20	3 2 1.5 1	1/2 3/8 4				200	HYDROM	ETER ANALYSIS	•
90 80 70 60 50 40 30 20 10	3 2 1.5 1	1/2 3/8 4				0.1	HYDROM	O.01	0.001

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29393
Project =>	RC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	B-1 @ 93 - 93.5'	Tested By =>	JLW
		Reviewed By =>	JH

Pan Label =>	DORK	
Tare Weight of Pan =>	536.3	A
Wet Wt. of Sample & Tare =>	1361	В
Dry Wt. of Sample & Tare =>	1068	С
Weight of Moisture (B-C) =>	293.0	D
Dry Wt. of Sample (C-A) =>	531.7	E
Percent Moisture (D/E)*100 =>	55.1	F

Sieve Retaining More Than About	Recommended Minimum Mass
10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 ams

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Project Name	В	Moist RC AQUIFER	Date	05/3	1/07		
							1
Project Number Lab Number	83173 29393	Phase No.	4	Tested By	JLW	Checked By	JH
Boring Number	B-1						
Sample Depth	93-93.5'						
Height (inches)	6.5						
Diameter (inches)	5.10						
Volume	0.0770						<u> </u>
Wt. of Sample At Field Moisture	3403.70						<u> </u>
Wet Density (pcf)	97.5						
Dry Density (pcf)	62.8						_
							-
Container No. Wt. of Wet							+-
Sample Plus Tare Wt. of Dry	1361.00						-
Sample Plus Tare	1068.00	·					<u> </u>
Tare (g)	536.30						
Tare (g) Dry Wt. Of Sample (g)	531.70						
Moisture Content, %	55.1%						
					•		

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 **Report Date:** 06/14/07

Sample No.:

29393

Sample Depth (ft.):

B-1 @ 93 - 93.5'

Material Description:

Load (psf)	Consolidation (%)			
100	0.09			
500	1.07			
500	0.86			
1000	1.15			
2000	2.03			
4000	3.13			
8000	4.80			
16000	7.36			
32000	12.23			
16000	11.82			
8000	11.35			
4000	10.79			

Tech.: jlw

B-1 @ 93 - 93.5'

PROJECT NAME: BRC AQUIFER TESTING

PROJECT NUMBER:

83173

LAB NUMBER:

29393 B-1

BORING:

93 - 93.5'

DEPTH: DATE:

06/04/07

UAIL.

0/04/0/

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1	2	
Mass of Pycometer,Mf =>	220.89		Α
Mass of Pycometer & Water,Ma =>	719.09		В
Temperature of Water when			
Ma above was Taken, Ta =>	22.7		c
Mass of Speciman & Pycnometer =>	271.89		D
Mass of Pycnometer, Mf =>	220.89	0	E
Mass of Oven-Dry Specimen, Mo =>	51		F
Mass of Pycnometer, Soil & Water, Mb =>	751.21		G
Temperature of Water when			
Mb Above was Taken, Tb =>	20.6		H

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta Water Density at Tb K Factor at Tb

0.99761	
0.99808	
0.99987	

Ma at Tb Sp Gr at Tb Sp Gr at 20 C

221.124154	0
2.701271186	#DIV/0!
2.700920021	#DIV/0!

SPECIFIC GRAVITY AT 20 C

2.700920021

Project Name: BRC Aquifer Testing Client: BRC By:	Doug Davis
Project Number: 83173 Task: 4 Date: 5-31-07 Date	Due:
	Boring Number
35 - 61's.	Depth
	Water Content (ASTM 2216)
	Dry Bulk Density (ASTM D2937)
	Total Porosity (ASTM D2435)
	Flexible Wall (ASTM D5084) OUTSIDE SERVICE
	Rigid Wall (ASTM D2434) OUTSIDE SERVICE
	Specific Gravity (ASTM D
	Specific Gravity (ASTM C127)
	Hydrometer (ASTM D422)
	Sieve Anysis (ASTM D422)
	Total Organic Carbon OUTSIDE SERVICE (ATLAS)
Shipped	
	2
	Remarks

LABORATORY NUMBER: 29396

LABORATORY WORK ORDER

Project No:	83173	Phase:	4	Sample Number:	SA	MPLE STATUS	Date Sampled:	5-31-07
Project Name:	BRE AZER	Testing		29396		Requested Test	Date Received:	5-31-07
Client Name:	BRC_					Test in Progress	Billed Date Needed:	4/8/07
Client Ref./P.O.#.					\boxtimes	Test Completed	Date Completed:	6/20/07
Special Instruction	ns:						Verified By:	

<u>\$1</u>	AS	PHALT 1	ESTING	
Usage	Qty.	99#	Status	
(123 Lt Wt Pieces/Agg		990715		
(127 Absorption/Gravity	2	100702	7903	<i>i</i> +
CAL 205 Crushed Part		990712		
CAL 227 Cleanness TST		990711		
Clay Lumps/Friabl Part C-142		990714		
D2726 Weight/Absorption Core		991110		
Extract Bitumin D1856, 2172.310		991102		
Flat/Elong Part/Sieve 119, 120		990713		
Hveem Stability/Set of 3		991147		
Ignition Oven Calibration		996156		
Injurious Organic Matter C-40		990701		
LA Rottler CAL131		990706		
Lottman Test		991121		
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108		
Max Theoretical Specific Gravity D-2041		991112		
Methylene Blue Test		990132		
Microwave Asphalt Moist Content		996137		
Oil Content By Ignition Oven		996153		
Sand Equivalent C217		990308		
Specific Gravity C127/8 D854		990211		
Stabil Test/Premix Sample CAL 366		991104		
Unit Weight C29		990704		

MISC. OTHER					
Usage	Qty.	99#	Status		
Chloride Analysis		996020			
Corrosivity Analysis		991508			
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324			
pHTest		990319			
Sulfate Analysis		992090			
Unit Weight Fireproofing		991314			

-					Verified By:	 			
CONCRET	E &	MASON	IRY 1	ESTING		7	MDOT	Γ	
Usage	Qty.	99#	Sh	atus		 1	= 		
C942 Grout Strength (cylinder/prism strength)		990119							
Compressive Test 12x8x16 Prisms (12" width)		991005					19		ered.
Compressive Test 8x8x16 Prisms (8" width)		991003				I M	AASHTO	1	Date Entered
Compressive Test/Cored Spec		990809				OM I			Date Enter
Concrete Compressive Test		990803					70000		
Drying Shrinkage (Set OF 3) C-157, CAL-530		990811				3 8	NBC		3
Flex and Strength/Concrete Beam		990806				 ī		1	3
Mortar Strength C-109		990118]		ľ	-
	OILS	TESTI	NG				ASTM Other		.;.
Usage	Q	_	_	Status			20	- 1	Entered By:
ASTM D1557 6" Method B, C and D		9901	04			 70	טט	L	E
CBR 100% Compaction D1883, T180		9902	09						
Check Point		9901	06			7 1	1		
Collapse Potential		9906	14			1			
Consolidation W/O time Rate/6 LD D2435	$\exists I$	9906	13			7	4=		
Correct Oversize Material in Sample CAL301	T	9902	03			7	-		
Direct Shear 1 Point		9906	08			下	45		
Direct Shear 3 Point		9906	09			14	1-		
Harvard Miniature		9921	91			7 1	1	F	
Hydrometer Only	12	9903	05	_		6-09			
Moisture Determination Only	2	9903	17 .	$\overline{}$] ~	1		79
Moisture Determination/Unit Weight	1	9903	16 _	$\overline{}$			0		ते र
Plasticity Index		9903	10						0.8
Resistivity Analysis		9903	18]]	١.	_	
R-Value/Untreated Material/Field Sample CAL 30	1	9902	01			[]	V	.0	3/4
Sample Prep Materials		9925	08			in	88	8	0 3
Sieve Analysis Wash #200 (117		9903	04				10		90
Sieve Analysis/Course & Fine	2	9903	01				tion:	rial	iger.
Sulfate Sound (5) Sieve SZ C88		9907	08				. Pool	Mate	I by:
Swell Test FHA Specification (60 psi)		9903	12			re.	plier	e of	Sampled by: Project Manager:
Unconfined Comp/Inc Moist D2166		9906	01			So	3 2	Į,	7 6

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From: <u>Jessi Henderson</u>		
	Sierra Testing Laboratories	Date:	June 1, 2007	
	5040 Robert J. Mathews Suite 1	File:		
	El Dorado, CA 95762	Copies:	3	
Interviews.	ect: BRC Aquifer Testing: Flexible and Rigid Wall Testing are sending: X Attached	n g Under Separate Co	over	
			CONTRACTOR OF THE PROPERTY OF	
Via:	Messenger First Class Mail	X United P	arcel Air Freight	
Tran		pproval eview & Comment	For Your Use	

REMARKS: Please run flexible wall (ASTM D2435) and rigid wall (ASTM D2434) on all of the following samples. For invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Sample Location	Sample Date	Laboratory Number	Shipped Date
B-4@35-36.5	05/31/07	29395	06/1/07
B-2@60-61.5	05/31/07	29396	06/1/07
B-2@90-91.5	05/31/07	29396	06/1/07

If you have any questions please don't hesitate to call.

Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque, NM Wakley Black	Particle size analysis (Wet Standard Sieves with Wash ASTM D422 Hydrometer (applicable when >5% fines) ASTM D422	Specific Gravity (Particle Density) Fine (< 4.75 mm diameter material) ASTM D854 Coerse (> 4.75 mm diameter material) ASTM C127	Seturated Hydraulic Conductivity Flexible Wall ASTM D5084 Rigid Well ASTM D2434	Property Analysis Property Analysis Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974 Dry bulk density ASTM D2937 Calculated total porosity ASTM D2435
/	12	1/1/5		Sample Nuggber
				Sample Type
Date Shipped		Date Shipped		
				Date Completed
Half Environmental Ayesysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 506) 345-3975		Sierra Testing Laboratories, Inc. 5040 Robert J. Methews Suite 1 El Dorado, CA 95762 (916) 939-3507		

Kieinfelder West, Inc.
Bhat/BRC Project
Project Number: 83173
Project Teats: 5-3/-07
Time: (145
Boring: 3-2
Sample Depth: 40-45

Date Sampled: S-3(-J)

Date Received:

Received By:

Arch

Kleinfelder West, Inc. BMMBRC Project Project Number: 83173 Project Task: 4 Date: 5-34-07 Date Sampled:		Received B <u>y:</u>		
Property Analysis	Sample Number	Sample Type	Date Completed	
Initial volumetric and gravimetric water conte ASTM D2216/ D4843/D2974				
Dry bulk density ASTM D2937				
Calculated total porosity ASTM D2435				
Saturated Hydraulic Conductivity	X	Soll		
Flexible Wall ASTM D5084	/\			
Rigid Welf ASTM D2434	\rightarrow	SOIL A		
		r '		
Specific Gravity (Particle Density)		Date Shipped		Server Teather Laboratories Inc
Fine (< 4.75 mm diameter material) ASTM D854	***			Sierra Testing Laboratories, Inc. 5040 Robert J. Mathews: Suite 1
Coarse (> 4.75 mm diameter material) ASTM C127		\		El Dorado, CA 95762
			-	(916) 939-3507
Particle size analysis (Wet				
Standard Sieves with Wash ASTM D422				
Hydrometer (applicable when >5% fines) ASTM D422				
Total or Fractional Organic Carbon		Date Shipped		Helf Environmental Analysis Laboratory (HEAL)
Analysis performed by Hall laboratory in		Бета стиррой		4901 Hawkins St NE # A
Albuquerque, NM				Viondinebline Law 81.10a
Walkley Black				505) 245-3975

Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: 4 Date: 5-71-07 Date Sampled: 5-71-07 Time: 028 Date Received: Boring: 60-61-5	O T) Received B <u>y:</u>	
Property Analysis	Sample Number Sample Type	Date Completed
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974		<u></u>
Dry bulk density ASTM D2937		
Calculated total porosity ASTM D2435		
Saturated Hydraulic Conductivity Flexible Wall ASTM D5084	<u> </u>	
Rigid Wall ASTM D2434	50.1	
Specific Gravity (Particle Density)	Date Shipped	
Fine (< 4.75 mm diameter material) ASTM D854	(Sierra Testing Laboratories, Inc. 5040 Robert J. Mathews Suite 1
Coarse (> 4.75 mm diameter material) ASTM C127	{	El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet		
Standard Sieves with Wash ASTM D422		
Hydrometer (applicable when >5% fines) ASTM D422		
	Data Shinnad	Hall Environmental Analysis Laboratory (HEAL)
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in	Date Shipped	4901 Hawkins St NE # A
Albuquerque, NM		Albuquerque, NM 87109
Walkiey Brack		505) 345-3975

Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: 4 Date: 5-3-07 Date Sampled: 5-3t-0 Boring: B-2 Sample Depth: 60-65	27 -	Rece	vived B <u>y:</u>		
Property Analysis	Sample Number	Sample Type		Date Completed	
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974		4			
Dry bulk density ASTM D2937 Calculated total porosity ASTM D2435	<u></u>				
Saturated Hydraulic Conductivity					
Flexible Wall ASTM 05084					
Rigid Wall ASTM D2434					
Specific Gravity (Particle Density) Fine (< 4.75 mm diameter material) ASTM D854	L		Date Shipped		Sierra Testing Laboratories, Inc.
Coarse (> 4.75 mm diameter meterial) ASTM C127	<u></u>				5040 Robert J. Mathews Suite 1 El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet Standard Sieves with Wash ASTM D422	<u> </u>				
Hydrometer (applicable when >5% fines) ASTM D422					
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque, NM Walkiey Black	<u></u>		Date Shipped		Hall Environmental Analysis Laboratory (HEAL) 4901 Hawlins St NE # A Albuquergue, NM 87109 505) 346-3975
					/

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(e)

DATE: June 11, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29396

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO.	LOCATION	DEPTH (feet)	ORGANIC CARBON
29396	B-2	60.0	2.30%
29396	B-2	94.5-95.0	2.00%

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B- 2 @ 60'; S-29396 @ 60.0 - 65.0' Silt (ML)

June 7, 2007 Specific Gravity = 2.68

LL = ; PL = ; Pl =

Gravel = 0%; Sand = 8%; Silt = 60%; Clay = 32%

Sie	eve size			% R	Retained		%	Passing	
3" ((75.0-mm)				0			100	
	(50.0-mm)				0			100	
1-1/	/2" (37.5-mn	n)			0			100	
	(25.0-mm)				0			100	
	" (12.5-mm)				0			100	
	" (9.5-mm)				0			100	
	(4.75-mm)				0			100	
	(2.00-mm)				0			100	
	(1.18-mm)				1			99	
) (425-µm)				2			98	
) (300-µm)				2			98	
	00 (150-μm)				4			96	
#20)0 (75-μm)				8			92	
Hy	drometer	Analysis	8						
29-								77	,
19-								66	
12-								54	
8-μ								49	
6-μ								41	
	-μm							32	
	lloids (<1-μr	n)						23	
	U. S. STANDA	ARD SIEVE OPENIA	NG,in. ∪.S.ST	TANDARD SIEVE NUMB	BERS		HYDROMETE	ER ANALYSIS	
	3 2 1.5	I 1/2 3	3/8 4	10 16	40 50 10	00 200			
10	00• -•		•	n 🕳 ma 📦 katalah		• • • • • • • • •	• • •	• • •	•
ç	90			<u> </u>					
	90								
	80 :	The second secon	er en	· · · · · · · · · · · · · · · · · · ·					
S :	70				· · · · · · · · · · · · · · · · · · ·				
SSING	70			· · · · · · · · · · · · · · · · · · ·		1211			
PASSING	70 · · · · · · · · · · · · · · · · · · ·								
NT PASSING	70								
CENT PASSING	70 · · · · · · · · · · · · · · · · · · ·		 						
ERCENT PASSING	70		 						
PERCENT PASSIN	70								
	70		 						
	70								
	70								•
	70			1	RAIN SIZE, n	0.1			0.001

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29396

BORING:

B - 2

DEPTH:

60'

DATE:

06/05/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	Z
Mass of Pycometer,Mf =>	221.22
Mass of Pycometer & Water,Ma =>	719.19
Temperature of Water when	
Ma above was Taken, Ta =>	22.7
Mass of Speciman & Pycnometer =>	281.80
Mass of Pycnometer, Mf =>	220.97
Mass of Oven-Dry Specimen, Mo =>	60.83
Mass of Pycnometer, Soil & Water, Mb =>	757.13
Temperature of Water when	
Mb Above was Taken, Tb =>	20.7

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99761
Water Density at Tb	0.99806
K Factor at Tb	0.99985

Ma at Tb	221.4440865
Sp Gr at Tb	2.657492355
Sp Gr at 20 C	2.657093731

SPECIFIC GRAVITY AT 20 C	2.657093731
--------------------------	-------------

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29396
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	B - 2 @ 60'	Tested By =>	JLW
		Reviewed By =>	JH

Pan Label =>	CDF	
Tare Weight of Pan =>	538.7	
Wet Wt. of Sample & Tare =>	1082.1	В
Dry Wt. of Sample & Tare =>	948.5	С
Weight of Moisture (B-C) =>	133.6	D
Dry Wt. of Sample (C-A) =>	409.8	E
Percent Moisture (D/E)*100 =>	32.6	F

Sieve Retaining More Than About 10% of Sample	Recommended Minimum Mass of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 ams

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	
Project =>	BRC AQUIFER TESTING	
Client =>	BRC	Đ
Phase =>	4	
Sample Location =>	B - 2 @ 94.5 - 95'	

Lab Number =>	29396
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

Pan Label =>	CTR 1	
Tare Weight of Pan =>	608.2	^_
Wet Wt. of Sample & Tare =>	1280.3	В
Dry Wt. of Sample & Tare =>	1092.2	_c
Weight of Moisture (B-C) =>	188.1	┛
Dry Wt. of Sample (C-A) =>	484	_E
Percent Moisture (D/E)*100 =>	38.9	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Project Number Lab Number	01	Moisture Density Project Name BRC AQUIFER TESTING Date 06/04/07				
Lab Number		V AQUIPER II		Date	06/0	14/U /
	83173 29396	Phase No.	Tested By	JLW	Checked By	JH
Boring Number	B-2				,	
Sample Depth	94.5-95					
Height (inches)	2.5					
Diameter (inches)	5.05					ļ
Volume Wt. of Sample	0.0290					
At Field Moisture	1389.30					
Wet Density (pcf)	105.6					-
Dry Density (pcf)	76.1					
Container No.						
Wt. of Wet Sample Plus Tare Wt. of Dry	1280.30					
Wt. of Dry Sample Plus Tare	1092.20					
Tare (g) Dry Wt. Of	608.20					
Sample (g)	484.00					
Moisture Content, %	38.9%					

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 **Report Date:** 06/11/07

Sample No.:

29396

Sample Depth (ft.):

B-2 @ 94.5 - 95'

Material Description:

Load (pst)	Consolidation (%)
100	-0.22
500	0.58
1000	1.19
2000	2.07
4000	3.38
8000	5.35
16000	7.81
32000	11.56
16000	11.27
8000	10.75
4000	10.30

Tech.: jlw

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29396

BORING:

B - 2 94.5 - 95'

DEPTH: DATE:

06/05/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	Y
Mass of Pycometer,Mf =>	224.41
Mass of Pycometer & Water,Ma =>	722.96
Temperature of Water when	
Ma above was Taken, Ta =>	22.6
Mass of Speciman & Pycnometer =>	267.50
Mass of Pycnometer, Mf =>	224.40
Mass of Oven-Dry Specimen, Mo =>	43.10
Mass of Pycnometer, Soil & Water, Mb =>	748.94
Temperature of Water when	
Mb Above was Taken, Tb =>	21.0

Prodedure

Record the mass of a clean dry pycnometer, Mf
Record the mass of the pyc. and distilled water at calibration mark, Ma
Record the temperature of the water to the nearest .5° C, Ta
Record Mass of Pyc & Water at Calibration Mark, Ma

Water Density at Ta	0.99764
Water Density at Tb	0.99799
K Factor at Tb	0.99979

Ma at Tb	224.5844925
Sp Gr at Tb	2.517523364
Sp Gr at 20 C	2.516994685

SPECIFIC GRAVITY AT 20 C 2.516994685

LL = ; PL = ; Pl =

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B- 2 @ 94.5-95'; S-29396 @ 90.0 - 95.0' Silt (ML)

June 7, 2007 Specific Gravity = 2.52

Gravel = 0%; Sand = 1%; Silt = 67%; Clay - 32%

Si	eve	size				ı	% Retai	ned		% Passing	
3"	(75.	.0-mm)				0			100	
2"	(50.	.0-mm)				0			100	
	1-1/2" (37.5-mm) 0							100			
		.0-mm					0			100	
		2.5-m					0			100	
		9.5-mn					0			100	
		75-mm					0			100	
		.00-m					0			100	
		.18-m					0			100	
		25-μm					0			100	
		00-μm					0			100	
		150-μ					0			100	
		75-un					1			99	
Н	ydı	romet	er An	alysis							
	-μm									85	
)-μm									74	
	-μm									57	
	μm	-								49	
	μm									45	
	μ 3-μπ	n								32	
- 1											
		ds (<1	-μm)							21	
		ds (<1	•	VE OPENING, 111.	U.S.ST	ANDARD SIEV	VE NUMBERS		,	21 HYDROMETER ANALYSIS	
		ds (<1 u. s. st/	•	VE OPENING, in. 1/2 3/8	U. S. ST 4	ANDARD SIE		0 100	200		
C		ds (<1 u. s. st/	ANDARD SIE					0 100			
C	olloi	ds (<1 u. s. st/	ANDARD SIE					0 100			•
C	olloi 100	ds (<1	ANDARD SIE					0 100			
C	100 90 80	ds (<1	ANDARD SIE			10 16	40 5	0 100			
C	olloi 100 90	ds (<1	ANDARD SIE			10 16	40 5	0 100			
C	100 90 80	ds (<1	ANDARD SIE			10 16	40 5	0 100			
C	100 90 80 70	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			
C	100 90 80 70	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			
C	100 90 80 70	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			•
C	100 90 80 70 60 50	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			•
C	100 90 80 70 60	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			•
C	100 90 80 70 60 50	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			
C	100 90 80 70 60 50 40	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			•
C	100 90 80 70 60 50 40 30	ds (<1	ANDARD SIE	1/2 3/8	4	10 16	40 5	0 100			•
C	100 90 80 70 60 50 40 30 20 10	ds (<1	ANDARD SIE	1/2 3/8		10 16	40 5	0 100	200		0.001

Project Name: B	RC Aquifer T	esting	Clie	nt: BRC		<u>E</u>	By: Doug	Davis
Project Number:	83173 Task	: 4	Date	: 5/29/0	7		Date Due	:
				B-3	B-3	B-3	B-3	Boring Number
				75.	95-	25.	e 2	Depth
				X	X			Water Content (ASTM 2216)
$\perp \downarrow \downarrow$					X			Dry Bulk Density (ASTM D2937)
					X			Total Porosity (ASTM D2435)
$\perp \perp \perp$						\triangle	λ	Flexible Wall (ASTM D5084) <u>OUTSIDE SERVICE</u>
						Δ	\rightarrow	Rigid Wall (ASTM D2434) OUTSIDE SERVICE
				X	X			Specific Gravity (ASTM Dee8)
				3	(3			Specific Gravity (ASTM C127)
$\perp \perp \perp$					X			Hydrometer (ASTM D422)
$\perp \perp \perp$					X			Sieve Anysis (ASTM D422)
				X	X	-		Total Organic Carbon OUTSIDE SERVICE (ATLAS)
$\perp \perp \perp$								
				-125	59.5-6	Shipaed	Shipped	
					0'	5/3)	5/31	Remarks
								1327 29392

٠,

11.

LABORATORY WORK ORDER

FOR ACCOUNTING USE ONLY
Date Entered:

Entered By:

Project No: 83173 Phase: 4	Sample Number:	S	UMPLE STATUS	Date Sampled:	5/29/07
Project Name: BRC Aquifu Tegting	29392		Requested Test	Date Received:	5/29/07
Client Name: SRC		\boxtimes	Test in Progress	Date Needed:	
Client Ref./P.O.#:		\boxtimes	Test Completed	Date Completed:	6/18/07
Special Instructions:				Verified By:	@/apop

VOI 104 C

ASPHALT TESTING						
Usage	Qty.	99#	Status			
C123 Lt Wt Pieces/Agg		990715				
C127 Absorption/Gravity	2	990702	790307			
CAL 205 Crushed Part		990712				
(AL 227 Cleanness TST		990711				
Clay Lumps/Friabl Part C-142		990714				
D2726 Weight/Absorption Core		991110				
Extract Bitumin D1856, 2172.310		991102				
Flat/Flong Part/Sieve 119, 120		990713				
Hveem Stability/Set of 3	retain	991147				
Ignition Oven Calibration		996156				
Injurious Organic Matter C-40		990701				
LA Rattler CAL131		990706				
Lottman Test		991121				
Marshall Stab/Flow D-1599 (Set of 3)/Lab	2772	991108				
Max Theoretical Specific Gravity D-2041		991112				
Methylene Blue Test		990132				
Microwave Asphalt Moist Content		996137				
Oil Content By Ignition Oven		996153				
Sand Equivalent (217		990308				
Specific Gravity C127/8 D854	- 40	990211				
Stabil Test/Premix Sample CAL 366		991104				
Unit Weight (29		990704				

MISC. OTHER					
Usage	Qty.	99#	Status		
Chloride Analysis		996020			
Corrosivity Analysis		991508			
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324			
pfl Test		990319			
Sulfate Analysis		992090			
Unit Weight Fireproofing		991314			

CONCRETE	& M	ASONR	TESTING		VDOT
Usage	Qty.	99#	Status		~
C942 Grout Strength (cylinder/prism strength)		990119			
Compressive Test 12x8x16 Prisms (12" width)		991005			AASHTO
Compressive Test 8x8x16 Prisms (8" width)		991003		WII	₹ S
Compressive Test/Cored Spec		990809			
Concrete Compressive Test		990803			
Drying Shrinkage (Set OF 3) C-157, CAL-530		990811		as).	MB C
Flex and Strength/Concrete Beam		990806			$\tilde{\Box}$
Mortar Strength C-109		990118			
S	OILS	TESTING		<u> </u>	150
Usage	Qty.	_	Status		1
ASTM D1557 6" Method B, C and D		990104		L	N
CBR 100% Compaction D1883, T180		990209			
Check Point		990106			1 1
Collapse Potential		990614			
Consolidation W/O time Rate/6 LD D2435	2	990613			
Correct Oversize Material in Sample CAL301		990203			1 17
Direct Shear 1 Point		990608			1
Direct Shear 3 Point		990609			
Harvard Miniature		992191			
tydrometer Only	2	990305			
Moisture Determination Only	2	990317			11,
Moisture Determination/Unit Weight	2	990316	_		
Plasticity Index		990310			1
Resistivity Analysis		990318			
R-Value/Untreated Material/Field Sample CAL 301		990201			
Sample Prep Materials		992508			
Sieve Analysis Wash #200 C117		990304			1
sieve Analysis/Course & Fine	2				
Sulfate Sound (5) Sieve SZ C88		990708			2
well Test FHA Specification (60 psi)		990312		Source:	Supplier
Inconfined Comp/Inc Moist D2166		990601		Şo	3

Kleinfelder West, Inc. BM/BRC Project Project Number: 83173 Project Task: 4	·02				
Date: 5/29/07 Date Sampled: 5/29/07 Time: Date Received: 5/29/07		Receive	nd Bv		
Boring:					
Sample Depth: 70-75		60			
Property Analysis Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974	Sample Number	Sample Type		Date Completed	
Dry bulk density ASTM D2937	33	(
Calculated total porosity ASTM D2435	<u>bb</u>	-			
Seturated Hydraulic Conductivity Flexible Wall ASTM D5084					
Rigid Wall ASTM D2434					
Specific Gravity (Particle Density) Fine (< 4.75 mm diameter material) ASTM D854	63		Date Shipped		Sierra Testing Laboratories, Inc.
Coarse (> 4.75 mm diameter material) ASTM C127	BB				5040 Robert J. Mathews Suite 1 El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet Standard Sieves with Wash ASTM D422	<u>83</u>	2			
Hydrometer (applicable when >5% fines) ASTM D422	<u>B3</u>	(
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque, NM Walkley Black	<u>63</u>		Date Shipped		Hall Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 505) 345-3975

Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: 4 Date: 5/29/07 Date Sampled: 5/29/0 Time: Date Received: 5/29/0 Boring: 3 Sample Depth: 75-75-6	7 - 7 -	Received By:	
Property Analysis	Sample Number Sample Type	•	Date Completed
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974		_	
Dry bulk density ASTM D2937		_	
Calculated total porosity ASTM D2435		_	
Saturated Hydraulic Conductivity Flexible Wall ASTM D5084		_)	
Rigid Walf ASTM D2434	4_		
Specific Gravity (Particle Density)		Date Shipped	Signa Testing Laboratories, Inc.
Fine (< 4.75 mm diameter material) ASTM D854			5040 Robert J. Mathews Suite 1
Coarse (> 4.75 mm diameter material) ASTM C127		_	El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet	/		
Standard Sieves with Wash ASTM D422			
Hydrometer (applicable when >5% fines) ASTM D422		_	
		Data Shianad	Hall Environmental Analysis Laboratory (HEAL)
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in		Date Shipped	4901 Hawkins St NE # A
Albuquerque, NM			Albuquerque, NM 87109
Walkley Black			505) 345-3975
			100-2008
			#10 oven dry
			oven dry

Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: Date: 5/29/07 Time: 16.39 Date Sampled: 5/29/ Date Received: 5/29/ Boring: 3 Sample Depth: 55-56.5	107 107 Received B <u>y:</u>	
Property Analysis	Sample Number Sample Type	Date Completed
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974		<u></u>
Dry bulk density ASTM D2937		
Calculated total porosity ASTM D2435		
Saturated Hydraulic Conductivity		
Flexible Wall ASTM D5084		
Rigid Wall ASTM D2434	<u>*</u>	
Specific Gravity (Particle Density)	Date Shipped	
Fine (< 4.75 mm diameter material) ASTM D854		Sierra Testing Laboratories, Inc. 5040 Robert J. Mathews Suite 1
Coarse (> 4.75 mm diameter material) ASTM C127		El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet		
Standard Sieves with Wash ASTM D422		
Hydrometer (applicable when >5% fines) ASTM D422		
Total or Fractional Organic Carbon	Date Shipped	Hall Environmental Analysis Laboratory (HEAL)
Analysis performed by Half laboratory in		4901 Hewkins St NE # A
Albuquerque, NM		Albuquerque, NM 87109 505) 345-3975
Walkiey Black		550, 5.5 55.5

Date Samples.	5/29/07 5/29102	Recei	ived By:		
Property Analysis Initial volumetric and gravimetric water conte ASTM D2216/ D48 Dry bulk density ASTM D2937 Calculated total porosity ASTM D2435	Sample Number 43/D2974	Sample Type		Date Completed	
Saturated Hydraulic Conductivity Flexible Wali ASTM D5084 Rigid Wali ASTM D2434					
Specific Gravity (Particle Density) Fine (< 4.75 mm diameter material) ASTM D854 Coarse (> 4.75 mm diameter material) ASTM C127	B3 B3		Date Shipped		Sierra Testing Laboratories, Inc. 5040 Robert J. Mathews Suite 1 El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet Standard Sieves with Wash ASTM D422 Hydrometer (applicable when >5% fines) ASTM D422	<u>133</u> <u>133</u>				
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque. NM Walkley Black	<u>B3</u>		Date Shipped		Hall Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 505) 345-3975

Kleinfelder West, Inc.

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From:	Jessi Henderson					
	Sierra Testing Laboratories	Date:	May 31, 2007					
	5040 Robert J. Mathews Suite 1	File:	<u></u>					
	El Dorado, CA 95762	Copies:	3					
	ubject: BRC Aquifer Testing: Flexible and Rigid Wall Testing Ve are sending: X Attached Under Separate Cover							
Via:	Messenger First Class Mail	X United P	arcel Air Freight					
Trans	smitted: X As Requested For Approx For Signatures For Review	val w & Comment	For Your Use					

Sample Location	Sample Date	Laboratory Number	Shipped Date
B-3@75-75.6	05/29/07	29392	05/31/07
B-3@55-56.5	05/29/07	29392	05/31/07
B-1@65-66.5	05/30/07	29393	05/31/07
B-1@95-96.5	05/30/07	29393	05/31/07

REMARKS: Please run flexible wall (ASTM D2435) and rigid wall (ASTM D2434) on all of the following samples. For

If you have any questions please don't hesitate to call.

invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(f)

DATE: June 13, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29392

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO.	LOCATION	DEPTH (feet)	ORGANIC CARBON
29392	B-3	59.5-60.0	6.30%
29392	B-3	72.5	2.60%

LABORATORY MANAGER

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

June 14, 2007

Boring #B-3 @ 72.5'; S-29392 @ 70.0 - 75.0' Silt with Sand (ML)

Specific Gravity = 2.84

LL = ; PL = ; PI =

Gravel = 0%; Sand = 15%; Silt = 55%; Clay = 30%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	0	100
#10 (2.00-mm)	0	100
#16 (1.18-mm)	1	99
#40 (425-μm)	6	94
#50 (300-μm) #100 (150-μm)	8 15	92 85
#100 (130-μπι) #200 (75-μm)	15	85 85
• • •		63
Hydrometer Analysi	<u> </u>	72
28-μm 18-μm		73 71
11-μm		69
8-μm		67
5-μm		65
3.0-μm		30
Colloids (<1-µm)		4
U. S. STANDARD SIEVE OPENI	IG, in. U. S. STANDARD SIEVE NUMBERS HY	DROMETER ANALYSIS
3 2 1.5 1 1/2		
100		• • • • •
90		·
80		
္ 70	agailam y de la Carago de la Companya • l	•
70 70 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
1 50		
Z 5 40	en e	
30		
20		
10		
	grander i de la companya de la comp	
o ' i - i		•

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

LAB NUMBER: 29392

BORING: B-3

W 72.5'

83173

DATE: 06/08/07

TECHNICIAN: JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	221.68
Mass of Pycometer & Water,Ma =>	719.09
Temperature of Water when	
Ma above was Taken, Ta =>	22.7
Mass of Speciman & Pycnometer =>	257.44
Mass of Pycnometer, Mf =>	220.91
Mass of Oven-Dry Specimen, Mo =>	36.53
Mass of Pycnometer, Soil & Water, Mb =>	742.77
Temperature of Water when	
Mb Above was Taken, Tb =>	21.1

Water Density at Ta Water Density at Tb K Factor at Tb 0.99761 0.99797 0.99977

Ma at Tb Sp Gr at Tb Sp Gr at 20 C 221.8590676 2.842801556 2.842147712

SPECIFIC GRAVITY AT 20 C

2.842147712

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 **Report Date:** 06/14/07

Sample No.:

29392

Sample Depth (ft.):

B-3 @ 72.5'

Material Description:

Tech.: jlw

Load (psf)	Consolidation (%)
100	-0.83
500	-0.40
1000	0.04
2000	0.58
4000	1.45
8000	2.52
16000	4.55
32000	7.44
16000	7.08
8000	6.59
4000	6.01

B-3 @ 72.5'

Project Name				Moisture Density				
	BI	RC AQUIFER	TESTIN	G	Date	06/0	4/07	
Project Number Lab Number	83173 29392	Phase No.	4	Tested By	JLW	Checked By	JH	
Boring Number	B-3							
Sample Depth	72.5				· · ·			
Height (inches)	1.85							
Diameter (inches)	5.15							
Volume Wt. of Sample	0.0223							
At Field Moisture	1063.99		·····					
Wet Density (pcf)	105.2							
Dry Density (pcf)	75.7							
Container No.								
Wt. of Wet Sample Plus Tare	625.80							
Wt. of Dry Sample Plus Tare	515.30				· ————————————————————————————————————			
Tare (g)	231.20							
Tare (g) Dry Wt. Of Sample (g)	284.10							
Moisture Content, %	38.9%							
		ļ			···			

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29392
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	B-3 @ 72.5'	Tested By =>	JLW
		Reviewed By =>	JH

Pan Label =>	JW	
Tare Weight of Pan =>	231.2	A
Wet Wt. of Sample & Tare =>	625.8	В
Dry Wt. of Sample & Tare =>	515.3	С
Weight of Moisture (B-C) =>	110.5	
Dry Wt. of Sample (C-A) =>	284.1	
Percent Moisture (D/E)*100 =>	38.9	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	ot Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B-3 @ 59.5-60'; S-29392 @ 55.0 - 60.0'

June 14, 2007

Sandy Silt (ML) LL = ; PL = ; PI = Specific Gravity = 2.64 Gravel = 0%; Sand = 33%; Silt = 57%; Clay = 10%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	0	100
#10 (2.00-mm)	0	100
#16 (1.18-mm)	0	100
#40 (425-μm)	1	99
#50 (300-μm)	2	98
#100 (150-μm)	6	94
#200 (75-μm)	33	67
Hydrometer Analysis		
35-µm		35
22-μm		31
13-μm		24
9-μm		20
7-μm		16
3.2-µm		10
Colloids (<1-μm)		4

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29392
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	B-3 @ 59.5 - 60'	Tested By =>	JLW
		Reviewed By =>	JH

_		
Pan Label =>	SMALL	
Tare Weight of Pan =>	522.7	A
Wet Wt. of Sample & Tare =>	1012.7	В
Dry Wt. of Sample & Tare =>	837.7	c
Weight of Moisture (B-C) =>	175.0	Þ
Dry Wt. of Sample (C-A) =>	315	E
Percent Moisture (D/E)*100 =>	55.6	F

Sieve Retaining More Than About Recommended Minimum Mass 10% of Sample of Moist Sample

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Project Name	ВІ	Moistu RC AQUIFER	Date	06/0	4/07		
Project Number	83173	Phase No.	4	Tested By	11.\A/	Chacked By	Liù
Project Number Lab Number	29392	Fliase No.	*}	resieu by	JLVV	Checked By	JII
Boring Number	B-3						
Sample Depth	59.5 - 60'						
Height (inches)	3.01						
Diameter (inches)	5.05						
Volume Wt. of Sample	0.0348						
At Field Moisture	1724.30						
Wet Density (pcf)	109.2						
Dry Density (pcf)	70.2						<u> </u>
~							ļ
Container No. Wt. of Wet						· · · · · · · · · · · · · · · · · · ·	ļ
Sample Plus Tare Wt. of Dry	1012.70						
Sample Plus Tare	837.70						<u> </u>
Tare (g) Dry Wt. Of	522.70						<u> </u>
Sample (g)	315.00					ļ	ļ
Moisture Content, %	55.6%						ļ

Particle-Size Analysis of Soil (ASTM D 422)

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 **Report Date:** 06/14/07

Tech.: jlw

Sample No.:

29392

Sample Depth (ft.):

B-3 59.5' - 60'

Material Description:

Load (psf)	Consolidation (%)
100	0.00
500	0.37
1000	0.65
2000	1.51
4000	2.43
8000	3.73
16000	5.40
32000	7.46
64000	10.59
32000	10.13
16000	9.73
8000	8.99

B-3 @ 59.5 - 60'

PROJECT 83173-4 LAB 29392

B-3

59.5' to 60' ASTM D-854

Pycnometer Label	1
Mass of Pycometer,Mf =>	224.4
Mass of Pycometer & Water,Ma =>	722.96
Temperature of Water when	
Ma above was Taken, Ta =>	20.5
Vlass of Speciman & Pycnometer =>	291.22
Mass of Pycnometer, Mf =>	224.4
Mass of Oven-Dry Specimen, Mo =>	66.47
of Pycnometer, Soil & Water, Mb =>	764.23
Temperature of Water when	20.5
Mb Above was Taken, Tb ≃>	

Prodedure

Record the mass of a clean dry pycnometer,Mf Record the mass of the pyc. and distilled water at calibr Record the temperature of the water to the nearest .5° (Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99812
Water Density at Tb	998.31
K Factor at Tb	0.9999

Ma at Tb	497444.2109
Sp Gr at Tb	2.637698413
Sp Gr at 20 C	2.637434643

SPECIFIC GRAVITY AT 20 C 2.637434643

Proje	ect N	umbe	r: 83	3173	Task:	4		Date	: 5	<u> </u>	31-	-07		Date	Due:	
													4		84	Boring Number
													35-36		3540	Depth
													,		\bigvee	Water Content (ASTM 2216)
															\mathbb{X}	Dry Bulk Density (ASTM D2937)
															7	Total Porosity (ASTM D2435)
													X			Flexible Wall (ASTM D5084) OUTSIDE SERVICE
													\nearrow			Rigid Wall (ASTM D2434) OUTSIDE SERVICE
														1	X	Specific Gravity (ASTM Dess)
															9	Specific Gravity (ASTM C127)
															X	Hydrometer (ASTM D422)
															X	Sieve Anysis (ASTM D422)
																Total Organic Carbon OUTSIDE SERVICE (ATLAS)
													 Sheard WI			Remarks

By: Doug Davis

Project Name: BRC Aquifer Testing

Client: BRC

LABORATORY NUMBER: 29395

LABORATORY WORK ORDER

K	L	E	I	N	F	E	L	D	E	R

Project No: Project Name: Client Name: Client Ref /P.O #:	83173 BRC Aguilen BRC	Phase: 4 TCST INS	Sample Number: 29395	MPLE STATUS Requested Test Test in Progress Test Completed	Date Sampled: Date Received: Date Needed: Bill Color	5/31/07 5/31/07 6/18/07
Special Instructions		A SECTION OF THE SECT			Verified By:	

ASPHALT TESTING								
Usage	Qty.	99#	Status					
(123 Lt Wt Pieces/Agg		990715						
C127 Absorption/Gravity	1	990702	4903	7				
CAL 205 Crushed Part		990712						
CAL 227 Cleanness TSI		990711						
Clay Lumps/Friabl Part C-142	Sa152	990714	eswe.					
U2726 Weight/Absorption Core		991110						
Extract Bitumin D1856, 2172.310		991102						
Hat/Flong Part/Sieve 119, 120		990/13						
Hveern Stability/Set of 3		991147						
Ignition Oven Calibration		996156						
Injurious Organic Matter (-40		990701						
LA Rattler (AL13)		990706						
Lottman Test		991121						
Marshall Stab/flow D-1599 (Set of 3)/Lab		991108						
Max Theoretical Specific Gravity D-2041		991112						
Methylene Blue Test		990132						
Microwave Asphalt Moist Content		996137						
Oil Content By Ignition Oven		996153						
Sand Equivalent C217		990308						
Specific Gravity C127/8 D854		990211						
Stabil Test/Premix Sample CAL 366		991104						
Unit Weight C29		990704						

MISC. OTHER						
Usage	Qty.	99#	Status			
Chloride Analysis		996020				
Corrosivity Analysis		991508				
Corrosivity, Resistivity, Sudium Sulfate, Solubility, p11*		990324				
pH Test		990319				
Sulfate Analysis		992090				
Unit Weight Fireproofing		991314				

CONCRETE	L M	ASONR	Y TESTIN	IG		100	- 1		
Usage	Qty.	99#	Status			D NDOT		-	1
C942 Grout Strength (cylinder/prism strength)	9	990119				-		- 1	1
Compressive Test 12x8x16 Prisms (12" width)	9	991005				AASHTO		,	_ 1
Compressive Test 8x8x16 Prisms (8" width)	9	991003				₹		1	Date OWEY
Compressive Test/Cored Spec	9	990809						3	S
Concrete Compressive Test	7	990803							TOK ALLUUNIING USE UNLY
Drying Shrinkage (Set OF 3) C-157, CAL-530	9	990811			5	UBC		3	3
Flex and Strength/Concrete Beam	9	90806						18	3
Mortar Strength C-109	9	990118						ľ	
Si	OILS	TESTING			3	MIS	her		
Usage	Qty.		Status			O ASIM	0		alasad B.
ASTM D1557 6" Method B, C and D	1	990104			L		L. J	L	3
CBR 100% Compaction D1883, T180		990209							
Check Point		990106							
Collapse Potential		990614							
Consolidation W/O time Rate/6 LD D2435		990613							
Correct Oversize Material in Sample CAL301		990203							
Direct Shear 1 Point		990608							
Direct Shear 3 Point		990609							
Harvard Miniature		992191				1			
Hydrometer Only	1	990305					1		
Moisture Determination Only	1	990317		>			7		
Moisture Determination/Unit Weight	1	990316					,		
Plasticity Index	1	990310					35	.,	
Resistivity Analysis		990318					1	3	O. anis
R-Value/Untreated Material/Field Sample CAL 301		990201			7,4	4	4-	3	2
Sample Prep Materials		992508			\$	2	1	2	7
Sieve Analysis Wash #200 (117		990304		_		`	1		
Sieve Analysis/Course & Fine	1	990301					tion:	rial	
Sulfate Sound (5) Sieve SZ C88		990708					Loca	Mate	1 by
Swell Test FHA Specification (60 psi)		990312			.e.	plier	Sample Location:	10 0	plec
Unconfined Comp/Inc Moist D2166		990601			So	Sup	2	Z.	S

Kleinfelder West, Inc. BM/BRC Project Project Number: 83173 Project Task: 4 Date: 531-07 Date Sampled: 5-3/1 Date Received: 5-3/1 Boring: 5-4/1 Sample Depth: 35-40	<u>4</u> 7 -		Received By:		
Property Analysis	Sample Number	Sample Type		Date Completed	
Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974			•		
Dry bulk density ASTM D2937	$\underline{}$		i		ner
Calculated total porosity ASTM D2435	\mathcal{L}				34
Saturated Hydraulic Conductivity					
Flexible Wall ASTM D5084					
Rigid Wall ASTM D2434					
Specific Gravity (Particle Density)	a 040		Date Shipped		
Fine (< 4.75 mm diameter material) ASTM D854	\mathcal{L}				Sierra Testing Laboratories, Inc.
Coarse (> 4.75 mm diameter material) ASTM C127	<u>~</u>	•			5040 Robert J. Mathews Suite 1 El Dorado, CA 95762 (916) 939-3507
Particle size analysis (Wet	11				
Standard Sieves with Wash ASTM D422					
Hydrometer (applicable when >5% fines) ASTM D422					
Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque, NM Walkley Black	<u></u>		Date Shipped		Hall Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque NM 87109 505) 345-2975

	Kleinfelder West, Inc. BMI/BRC Project Project Number: 83173 Project Task: 4 Date: 53/-7 Date Sampled: 5-3/- Boring: 8-1/36-5 Sample Depth: 35-36-5	<u>-</u> 07	e Re	oceived B <u>y:</u>		
	Property Analysis Initial volumetric and gravimetric water conte ASTM D2216/ D4643/D2974	Sample Number	Sample Type		Date Completed	
	. Dry bulk density ASTM D2937			:*/		
	Calculated total porosity ASTM D2435					
	Saturated Hydraulic Conductivity Flexible Wall ASTM D5084 Rigid Wall ASTM D2434	*	501			
•	Specific Gravity (Particle Density) Fine (< 4.75 mm diameter material) ASTM D854			Date Shipped		Sierra Testing Laboratories, Inc. 5040 Robert J. Mathews Suite 1
	Coarse (> 4.75 mm diameter material) ASTM C127		-			El Dorado, CA 95762 (916) 939-3507
	Particle size analysis (Wet Standard Sieves with Wash ASTM D422		z	C-0		
	Hydrometer (applicable when >5% fines) ASTM D422		1			
	Total or Fractional Organic Carbon Analysis performed by Hall laboratory in Albuquerque, NM Walkiey Black		b <u></u>	Date Shipped		Hell Environmental Analysis Laboratory (HEAL) 4901 Hawkins St NE # A Albuquerque, NM 87109 505) 345-3975

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From:	Jessi Henderson
	Sierra Testing Laboratories	Date:	June 1, 2007
	5040 Robert J. Mathews Suite 1	_ File:	was a second sec
	El Dorado, CA 95762	Copies:	3
	ect: BRC Aquifer Testing: Flexible and Rigid Wall Testing re sending: X Attached Under	Separate Co	ver
Via:	Messenger First Class Mail	X United Pa	arcel Air Freight
Trans	smitted: X As Requested For Approva For Signatures For Review		For Your Use

REMARKS: Please run flexible wall (ASTM D2435) and rigid wall (ASTM D2434) on all of the following samples. For invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Sample Location	Sample Date	Laboratory Number	Shipped Date
B-4@35-36.5	05/31/07	29395	06/1/07
B-2@60-61.5	05/31/07	29396	06/1/07
B-2@90-91.5	05/31/07	29396	06/1/07

If you have any questions please don't hesitate to call.

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B- 4 @ 37.5'; S-29395 @ 35.0 - 40.0'

June 7. 2007

Silt with Sand (ML)

Specific Gravity = 2.68

LL = ; PL = ; PI =

Gravel = 2%; Sand = 20%; Silt = 59%; Clay = 19%

Sieve size		% Retained		% Passing	
3" (75.0-mm)		0		100	
2" (50.0-mm)		0		100	
1-1/2" (37.5-mm)		0		100	
1" (25.0-mm)		0		100	
1/2" (12.5 - mm)		0		100	
3/8" (9.5-mm)		0		100	
#4 (4.75-mm)		2		98	
#10 (2.00-mm)		4		96	
#16 (1.18-mm)		7		93	
#40 (425-μm)		10		90	
#50 (300-µm)		11		89	
#100 (150-μm)		13		87	
#200 (75-μm)		22		78	
Hydrometer Analy	ysis				
31-μm				59	
20-μm				52	
12-μm				41	
9-μm				35	
6-μm				28	
3.2-µm				19	
Colloids (<1-μm)				11	
U. S. STANDARD SIEVE OF		RD SIEVE NUMBERS		HYDROMETER ANALYSIS	
3 2 1.5 1	1/2 3/8 4 10		200	HYDROMETER ANALYSIS	
3 2 1.5 1	1/2 3/8 4 10		200	HYDROMETER ANALYSIS	
3 2 1.5 1 100 • • • • • • • • • • • • • • • • • •	1/2 3/8 4 10	16 40 50 100	200	HYDROMETER ANALYSIS	
3 2 1.5 1	1/2 3/8 4 10		200	HYDROMETER ANALYSIS	
3 2 1.5 1	1/2 3/8 4 10	16 40 50 100	200	HYDROMETER ANALYSIS	
3 2 1.5 1	1/2 3/8 4 10	16 40 50 100	200	HYDROMETER ANALYSIS	٠
3 2 1.5 1 100 • • • • • • • • • • • • • • • • • •	1/2 3/8 4 10	16 40 50 100	200	HYDROMETER ANALYSIS	
3 2 1.5 1 100 • • • • • • • • • • • • • • • • • •	1/2 3/8 4 10	16 40 50 100		HYDROMETER ANALYSIS	•
3 2 1.5 1	1/2 3/8 4 10	16 40 50 100		HYDROMETER ANALYSIS	•
3 2 1.5 1 100 • • • • • • • • • • • • • • • • • •	1/2 3/8 4 10	16 40 50 100		HYDROMETER ANALYSIS	·
3 2 1.5 1 100 • • • • • • • • • • • • • • • • • •	1/2 3/8 4 10	16 40 50 100		HYDROMETER ANALYSIS	
3 2 1.5 1 100 • • • • • • • • • • • • • • • • • •	1/2 3/8 4 10	16 40 50 100		HYDROMETER ANALYSIS	•

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(b)

DATE: June 12, 2007

3834983

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29395

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO.	LOCATION	DEPTH (feet)	ORGANIC CARBON
29395	B-4	37.5	3.30%

LABORATORY MANAGER

Project Number	. 2	Moisture Density					
Project Number	<u> </u>	RC AQUIFER TE	ESTING	Date	06/0	06/08/07	
Lab Number	83173 29395	Phase No.	Tested By	JLW	Checked By	JH	
Boring Number	B-4						
Sample Depth	37.5						
Height (inches)	4.39						
Diameter (inches)	5.17						
Volume	0.0533						
Wt. of Sample At Field Moisture	2597.66						
Wet Density (pcf)	107.4						
Dry Density (pcf)	77.7						
Container No.							
Wt. of Wet Sample Plus Tare Wt. of Dry	475.15						
Sample Plus Tare	409.70						
Tare (g)	239.00						
Tare (g) Dry Wt. Of Sample (g)	170.70						
Moisture Content, %	38.3%						
					- ····································		
		LL					

.

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29395
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	B-4 @ 37.5'	Tested By =>	JLW
		Reviewed By =>	JH

Pan Label =>	OZZY	
Tare Weight of Pan =>	239	
Wet Wt. of Sample & Tare =>	475.2	В
Dry Wt. of Sample & Tare =>	409.7	С
Weight of Moisture (B-C) =>	65.5	D
Dry Wt. of Sample (C-A) =>	170.7	E
Percent Moisture (D/E)*100 =>	38.4	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

PROJECT NAME: BRC AQUIFER TESTING

PROJECT NUMBER:

83173

LAB NUMBER:

29393

BORING:

B-4

DEPTH: DATE: 37.5'

TECHNICIAN:

06/11/07 JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1	2
Mass of Pycometer,Mf =>	224.4	/
Mass of Pycometer & Water,Ma =>	722.96	
Temperature of Water when		
Ma above was Taken, Ta =>	22.6	
Mass of Speciman & Pycnometer =>	279.24	
Mass of Pycnometer, Mf =>	224.61	Ö
Mass of Oven-Dry Specimen, Mo =>	54.63	
Mass of Pycnometer, Soil & Water, Mb =>	757.21	
Temperature of Water when		
Mb Above was Taken, Tb =>	20.7	

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density	at	Та
Water Density	at	Τb
K Factor at Tb		

0.99764	
0.99806	
0.99985	

Ma at Tb Sp Gr at Tb Sp Gr at 20 C

224.6093952	0
2.680569185	#DIV/0!
2.6801671	#DIV/0!

SPECIFIC GRAVITY AT 20 C

2.6801671

Project Name BRC Aquifer Testing				Clier	nt: BR	С			 	By: [oug	Davis	
Project Number	er: 83173	Task:	4		Date	:	0-	1-0	J		Date	Due	
		04-05-		AA-0°	Ap-09-01		30-05		4-9	B-4			Boring Number
		-70	70 71.5	Ap-08-04	55-60		m0-	2	100	750		3.1gh	Depth
		X			X					X		X	Water Content (ASTM 2216)
	9	X	2		. X					X		B	Dry Bulk Density (ASTM D2937)
	l l	F	-4		1					X		2	Total Porosity (ASTM D2435)
							X						Flexible Wall (ASTM D5084) OUTSIDE SERVICE
			-	>									Rigid Wall (ASTM D2434) OUTSIDE SERVICE
		X			X					X		X	Specific Gravity (ASTM Dees)
	9	X	\leq		X					0	(X	Specific Gravity (ASTM C127)
		X	N Z) Mind	X					 X		×	Hydrometer (ASTM D422)
		X	BA	Rill	X					X		X	Sieve Anysis (ASTM D422)
		X	71	10 ps	X					X		X	Total Organic Carbon OUTSIDE SERVICE (ATLAS)
			77	accordent							`		
			विया	\$ \$									
			Colator supped	2			A Second	Š	\$			72000 A	
			red.				7		Shine			; , , , , , , , , , , , , , , , , , , ,	
			6/				6/4		6/4			5 Kes	Remarks
				4			A	1	A			1 412%	arks *
												3.4-4	<i>,</i> 1
												ictivic	

LABORATORY NUMBER: 29402

LABORATORY WORK ORDER

										J
K	L	E	I	N	F	E	L	D	E	R

FOR ACCOUNTING USE ONLY
Date Entered:

Entered By.

Supplier. Sample Location:

Type of Material: Sampled by:

Project Manager:

Project No: 83173 Phase: 4 Project Name: BRC AGUIGNI TESTING Client Name: BRC Client Ref./P.O.#:	Sample Number: 29402.	SAMPLE STATUS Requested Test Test in Progress Test Completed	Date Sampled: Date Received: Date Needed: Date Tamplated:	6/1/07 6/1/07 MSAP 6/18/03
Special Instructions:		iesi Compietea	Verified By:	47.44.03

ASPHALT TESTING						
Usage	Qty.	99#	Status			
C123 Lt Wt Pieces/Agg		990715				
C127 Absorption/Gravity	7:	7000	FIC3	07)		
CAL 205 Crushed Part		990712				
CAL 227 Cleanness TST		990711				
Clay Lumps/Friabl Part C-142		990714				
D2726 Weight/Absorption Core		991110				
Extract Bitumin D1856, 2172.310		991102				
Flat/Elong Part/Sieve 119, 120		990713				
Hveem Stability/Set of 3		991147				
Ignition Oven Calibration		996156				
Injurious Organic Matter C-40		990701				
LA Rottler CAL131		990706				
Lottman Test		991121				
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108				
Max Theoretical Specific Gravity D-2041		991112				
Methylene Blue Test		990132				
Microwave Asphalt Moist Content		996137				
Oil Content By Ignition Oven		996153				
Sand Equivalent C217		990308				
Specific Gravity C127/8 D854		990211				
Stabil Test/Premix Sample CAL 366		991104				
Unit Weight C29		990704				

MISC. OTHER					
Usage	Qty.	99#	Status		
Chloride Analysis		996020			
Corrosivity Analysis		991508			
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324			
pH Test		990319			
Sulfate Analysis		992090			
Unit Weight Fireproofing		991314			

·					Verified By:	
CONCRET	E &	MASOI	NRY	TESTII	VG	NDOT
Usage	Qty.	99#	15	tatus		- ×
C942 Grout Strength (cylinder/prism strength)		99011	9			
Compressive Test 12x8x16 Prisms (12" width)		99100	5			6
Compressive Test 8x8x16 Prisms (8" width)		99100	3			LLWD
Compressive Test/Cored Spec		99080	9			00
Concrete Compressive Test		99080	3			
Drying Shrinkage (Set OF 3) C-157, CAL-530		99081	i			CCSD
Flex and Strength/Concrete Beam		99080	6			
Mortar Strength C-109		99011	8			755
	SOIL	S TESTI	ING			CCPW ASTM Other
Usage	_		9#	Status		
ASTM D1557 6" Method B, C and D	1	990	104			
CBR 100% Compaction D1883, T180	\top	990	209			
Check Point	\top	990	106			
Collapse Potential	\top	990	614			
Consolidation W/O time Rate/6 LD D2435	1	990	613	_	1	
Correct Oversize Material in Sample CAL301	7*	990	203		1	
Direct Shear 1 Point		990	608			
Direct Shear 3 Point		990	609			
Harvard Miniature	T	992	191			0
Hydrometer Only	7	990	305	_	1	40-62
Moisture Determination Only	3	990	317			9
Moisture Determination/Unit Weight	2	3 990	316		1	'1
Plasticity Index		990	310			7
Resistivity Analysis		990	318			
R-Value/Untreated Material/Field Sample CAL 30	01	990	201			4
Sample Prep Materials		992	508			8-4
Sieve Analysis Wash #200 (117		990	304			
Sieve Analysis/Course & Fine	4	990	301			tion:
Sulfate Sound (5) Sieve SZ C88		990	708			Local
Swell Test FHA Specification (60 psi)		990	312			Source: Supplier: Sample Location:
Unconfined Comp/Inc Moist D2166		990	601			Sou Sou

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From:	Jessi Henderson					
	Sierra Testing Laboratories	Date:	June 4, 2007					
	5040 Robert J. Mathews Suite 1	File:	No.					
	El Dorado, CA 95762	Copies:						
5 <u>7</u> /2	Subject: BRC Aquifer Testing: Flexible and Rigid Wall Testing We are sending: X Attached Under Separate Cover							
Via:	Messenger First Class Mail	X United Pa	arcel Air Freight					
Trans	smitted: X As Requested For Appro For Signatures For Revie	val w & Comment	For Your Use					

REMARKS: Please run flexible wall (ASTM D5084) and rigid wall (ASTM D2434) on all of the following samples. For invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Sample Location	Sample Date	Laboratory Number	Shipped Date
AA-20-OW@30-31.5'	06/02/07	29403	06/4/07
AA-20-OW@50-51.5'	06/02/07	29403	06/4/07
AA-06@55-56.5'	06/03/07	29401	06/4/07
AA-06@60-61.5'	06/03/07	29401	06/4/07
B-4@80-81.5'	06/01/07	29402	06/4/07
AA-09-OW@55-56.5'	06/01/07	29402	06/4/07
AA-09-OW@70-71.5'	06/01/07	29402	06/4/07

If you have any questions please don't hesitate to call.

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From:	Jessi Henderson							
	Sierra Testing Laboratories	Date:	June 4, 2007							
	5040 Robert J. Mathews Suite 1	File:								
	El Dorado, CA 95762	Copies:	e							
	Subject: BRC Aquifer Testing: Flexible and Rigid Wall Testing Ne are sending: X Attached Under Separate Cover									
Via:	Messenger First Class Mail	X United Pa	arcel Air Freight							
Trans	mitted: X As Requested For Approv For Signatures For Review	al & Comment	For Your Use							

Sample Location	Sample Date	Laboratory Number	Shipped Date
AA-20-OW@30-31.5'	06/02/07	29403	06/4/07
AA-20-OW@50-51.5'	06/02/07	29403	06/4/07
AA-06@55-56.5'	06/03/07	29401	06/4/07
AA-06@60-61.5'	06/03/07	29401	06/4/07
B-4@80-81.5'	06/01/07	29402	06/4/07
AA-09-OW@55-56.5'	06/01/07	29402	06/4/07
AA-09-OW@70-71.5'	06/01/07	29402	06/4/07

REMARKS: Please run flexible wall (ASTM D5084) and rigid wall (ASTM D2434) on all of the following samples. For

If you have any questions please don't hesitate to call.

invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(g)

DATE: June 15, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29402

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO.	LOCATION	DEPTH (feet)	ORGANIC CARBON		
29402	B-4	76- 77	6.80%		
29402	AA-09-OW	57.5-58.0	4.10%		
29402	AA-09-OW	66-67	4.20%		

LABORATORY MANAGER

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B-4@76-77'; S-29402 @ 75.0 - 80.0'

Silt with Gravel (ML)

LL = ; PL = ; PI =

June 7, 2007

Specific Gravity = 2.67

Gravel = 29%; Sand = 15%; Silt = 50%; Clay = 6%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	6	94
1/2" (12.5-mm)	15	85
3/8" (9.5-mm)	20	80
#4 (4.75-mm)	29	71
#10 (2.00-mm)	33	67
#16 (1.18-mm)	36	64
#40 (425-μm)	40	60
#50 (300-μm)	41	59
#100 (150-μm)	43	57
#200 (75-μm)	44	56
Hydrometer Analysis		
30-μm		31
19-μm		29
12-μm		26
9-μm		18
6-μm		12
3.3-µm		6
Colloids (<1-μm)		3
U. S. STANDARD SIEVE OPENING, in. U	J. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
3 2 1.5 1 1/2 3/8 4	10 16 40 50 100 200	

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4
Report Date:

Sample No.:

Sample Depth (ft.):

B-4 @ 76 - 77'

Material Description:

Tech.: jlw

Load (psf)	Consolidation (%)
100	0.00
100	-0.68
500	0.15
1000	0.41
2000	0.98
4000	2.07
8000	3.82
16000	6.35
32000	9.78
64000	14.98
32000	14.50
8000	12.97
4000	12.23
2000	11.46

B-4 @ 76 - 77'

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29402

BORING:

B-4

DEPTH: DATE: 76 - 77' 06/14/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	220.94
Mass of Pycometer & Water,Ma =>	719.4
Temperature of Water when	
Ma above was Taken, Ta =>	20.4
Mass of Speciman & Pycnometer =>	273.66
Mass of Pycnometer, Mf =>	220.94
Mass of Oven-Dry Specimen, Mo =>	52.56
Mass of Pycnometer, Soil & Water, Mb =>	752.3
Temperature of Water when	
Mb Above was Taken, Tb =>	20.5

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99812
Water Density at Tb	0.9981
K Factor at Tb	0.9999

Ma at Tb	220.9300308
Sp Gr at Tb	2.673448627
Sp Gr at 20 C	2.673181282

SPECIFIC GRAVITY AT 20 C	2.673181282

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29402
Project =>B	RC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	B-4 @ 76 - 77'	Tested By =>	JLW
		Reviewed By =>	JH

•		
Pan Label =>	ZI	
Tare Weight of Pan =>	33.76	A
Wet Wt. of Sample & Tare =>	163.36	В
Dry Wt. of Sample & Tare =>	132.51	С
Weight of Moisture (B-C) =>	30.9	Þ
Dry Wt. of Sample (C-A) =>	98.75	E
Percent Moisture (D/E)*100 =>	31.2	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Project Name	B	RC AQUIFER T	e Density ESTING	Date	06/0	7/07
,501.1141110					00/0	
Project Number Lab Number	83173 29402	Phase No.	Tested By	JLW	Checked By	JH
Boring Number	B-4					
Sample Depth	76-77					
Height (inches)_	11					
Diameter (inches)	2.41					
Volume Wt. of Sample At Field Moisture	0.8282					
At Field Moisture	129.70					
Wet Density (pcf)	107.4					<u> </u>
Dry Density (pcf)	81.8					
Container No.						
Wt. of Wet Sample Plus Tare Wt. of Dry	163.40					
Wt. of Dry Sample Plus Tare	132.5 0					
Tare (g)	33.76	·				
Tare (g) Dry Wt. Of Sample (g)	98.74					_
Moisture Content, %	31.3%					
						<u> </u>

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #B-4@46-47'; S-29402 @ 45.0 - 47.5'

June 7, 2007 Specific Gravity = 2.71

Silty Sand with Gravel (SM)

Gravel = 21%; Sand = 50%; Silt = 28%; Clay = 1%

LL = ; PL = ; PI =

Siev	e size				% R	etaine	d	ď	% Passing		
3" (7.	5.0-mm))				0	· · · · · · · · · · · · · · · · · · ·		100		
	0.0-mm)					0			100		
	:" (37.5-i					0			100		
	5.0-mm)					3			97		
	(12.5-mi					10			90		
	(9.5-mm					12			88		
	.75-mm					21			79		
	2.00-mn					46			54		
	1.18-mn					56			44		
#40 (425-μm)				67			33		
	300-µm					69			31		
	(150-µr					71			29		
	(75-μm					71			29		
Hvd	lromet	er Aı	nalysis								
35-μi				······································					3		
22-μι									3		
13-μι									2		
9-μm									2		
6-μm									2		
3.3-μ									1		
Colle	oids (<1-	μm)							1		
	U. S. STA	NDARD SIE	EVE OPENING, in. U	I. S. STANDAR	RD SIEVE NUMB	ERS		HYDROM	ETER ANALYSIS		
		1.5 I	1/2 3/8 4	01	16	40 50	100 200				
100	• •	•			•	• •		• • • • •	• • • • • • • • •	*	
90					 	_;	<u> </u>				
80	45.1		i in Time		!	. :	•			•	
80											
9 70									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ISS 60			<u> </u>			<u> </u>					
Z	1.1.1		1111	•	1		0.7				
PERCENT PASSING 00 00 00 00 00 00 00 00 00 00 00 00 00											
G 40						- : :			:		
E 30	11111			e de la companya de La companya de la co	Hilli.						
_	1.5	. :	11.1		1.1	1	· - •				
20	117			:							
10		-	, (i), , ,	and the second		44	The second secon				
0					1			• •	• • •	•	
U											
	100		10		1	AIN SIZ	0.1		0.01	0.001	

SPECIFIC GRAVITY OF COARSE AND FINE AGGREGATE ASTM 127 & 128							
Job # =>[83173	Lab Number =>	29402				
Project =>	BRC Aquifer Testing	Date Sampled =>					
Client =>	BRC	Date Received =>					
Phase =>	4	Sampled By =>					
Sample Location =>	B-4 @ 45 - 4	6' Tested By =>	JLW				
[Reviewed By =>					

COARSE AGGREGATE		ATE
Dry Wt. of Sample A=>	1979.4	
SSD Wt. of Sample B=>	2046.8	
Wt. SSD Under Water C=>	1229.8	Averages
Bulk Sp Gr. A/(B-C) =>	2.423	2.423
Bulk SSD B/(B-C) =>	2.505	2.505
Apparent Sp Gr A/(A-C) =>	2.641	2.641
Absorption ((B-A)/A)*100 =>	3.4	3.4

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29402 B - 4

BORING: DEPTH:

45 - 46'

DATE:

06/13/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	Z
Mass of Pycometer,Mf =>	221.22
Mass of Pycometer & Water,Ma =>	719.19
Temperature of Water when	
Ma above was Taken, Ta =>	22.7
Mass of Speciman & Pycnometer =>	322.08
Mass of Pycnometer, Mf =>	221.12
Mass of Oven-Dry Specimen, Mo =>	100.96
Mass of Pycnometer, Soil & Water, Mb =>	782.93
Temperature of Water when	
Mb Above was Taken, Tb =>	21

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99761
Water Density at Tb	0.99799
K Factor at Tb	0.99979

Ma at Tb	221.4092286
Sp Gr at Tb	2.71252015
Sp Gr at 20 C	2.711950521

CDECIEIC CDAVITY AT 20 C	2 744050524
SPECIFIC GRAVITY AT 20 C	2.711950521

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

		_
Job # =>	83173	Lab
Project =>	BRC AQUIFER TESTING	Date S
Client =>	BRC	Date R
Phase =>	4	Sam
Sample Location =>	B-4 @ 46 - 47'	Te
		Revi

Lab Number =>	29402
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

		_
Pan Label =>	ROCK	
Tare Weight of Pan =>	439	A
Wet Wt. of Sample & Tare =>	2360.5	В
Dry Wt. of Sample & Tare =>	2072.3	c
Weight of Moisture (B-C) =>	288.2	b
Dry Wt. of Sample (C-A) =>	1633.3	E
Percent Moisture (D/E)*100 =>	17.6	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of
AMERICAN SOCIETY FOR
TESTING MATERIALS

LABORATORY NO:

14462(d)

DATE:

June 12, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29402

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION

ASTM 2974

 SAMPLE NO.
 LOCATION
 DEPTH (feet)
 ORGANIC CARBON

 29402
 B-4
 46-47
 1.50%

LABORATORY MANAGER

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-09-OW@57.5-58'; S-29402 @ 55.0 - 60.0'

June 7, 2007

Silt with Sand (ML) LL = ; PL = ; PI = Specific Gravity = 2.67 Gravel = 1%; Sand = 17%; Silt = 56%; Clay = 26%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	0	100
l" (25.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	1	99
#10 (2.00-mm)	6	94
#16 (1.18-mm)	9	91
#40 (425-μm)	12	88
#50 (300-μm)	13	87
#100 (150-μm)	15	85
#200 (75-μm)	18	82
Hydrometer Analysis		
30-μm		61
19-μm		56
12-μm		49
8-μm		43
6-μm		38
3.2-μm		26
Colloids (<1-μm)		14

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29402 AA-09-OW

BORING: DEPTH:

57.5 - 58

DATE:

06/13/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	Υ
Mass of Pycometer,Mf =>	224.4
Mass of Pycometer & Water,Ma =>	722.96
Temperature of Water when	
Ma above was Taken, Ta =>	22.6
Mass of Speciman & Pycnometer =>	271.18
Mass of Pycnometer, Mf =>	224.59
Mass of Oven-Dry Specimen, Mo =>	46.59
Mass of Pycnometer, Soil & Water, Mb =>	751.56
Temperature of Water when	
Mb Above was Taken, Tb =>	21.1

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99764
Water Density at Tb	0.99797
K Factor at Tb	0.99977

Ma at Tb	224.5645248
Sp Gr at Tb	2.589772096
Sp Gr at 20 C	2.589176448

SPECIFIC GRAVITY AT 20 C 2.589176448

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173
Project =>	BRC AQUIFER TESTING
Client =>	BRC
Phase =>	4
Sample Location =>	AA-09-OW @ 57.5 - 58'

Lab Number =>	29402
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

		_
Pan Label =>	KL	
Tare Weight of Pan =>	392.85	A
Wet Wt. of Sample & Tare =>	886.65	В
Dry Wt. of Sample & Tare =>	665.44	С
Weight of Moisture (B-C) =>	221.2	D
Dry Wt. of Sample (C-A) =>	272.59	E
Percent Moisture (D/E)*100 =>	81.2	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample	
No. 10	100 to 200 gms	
No. 4	300 to 500 gms	
3/4"	500 to 1000 gms	
11/2"	1500 to 3000 gms	
3"	5000 to 10000 gms	

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

BRC Aquifer Testing 83173-4

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-09-OW@66-67'; S-29402 @ 65.0 - 70.0'

June 7, 2007

Specific Gravity = 2.60

Silt with Sand (ML) LL = ; PL = ; PI =

Gravel = 2%; Sand = 24%; Silt = 62%; Clay = 12%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	1	99
#4 (4.75-mm)	2	98
#10 (2.00-mm)	6	94
#16 (1.18-mm)	8	92
#40 (425-μm)	10	90
#50 (300-μm)	11	89
#100 (150-μm)	14	86
#200 (75-μm)	26	74
Hydrometer Analysis		
33-μm		44
21-μm		39
13-μm		29
9-μm		24
6-µm		20
3.3-µm		12
Colloids (<1-μm)		7

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173 29402

LAB NUMBER:

AA-09-OW

BORING: DEPTH:

66 - 67'

DATE:

06/13/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	X
Mass of Pycometer,Mf =>	221.68
Mass of Pycometer & Water,Ma =>	719.09
Temperature of Water when	
Ma above was Taken, Ta ≕>	22.7
Mass of Speciman & Pycnometer =>	269.54
Mass of Pycnometer, Mf =>	221.68
Mass of Oven-Dry Specimen, Mo =>	47.86
Mass of Pycnometer, Soil & Water, Mb =>	748.57
Temperature of Water when	
Mb Above was Taken, Tb =>	21.2

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99761
Water Density at Tb	0.99795
K Factor at Tb	0.99974

Ma at Tb	221.8491194
Sp Gr at Tb	2.603917301
Sp Gr at 20 C	2.603240283

SPECIFIC GRAVITY AT 20 C 2.603240283

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

_	
Job # =>	83173
Project =>	BRC AQUIFER TESTING
Client =>	BRC
Phase =>	4
Sample Location =>	AA-09-OW @ 66 - 67'

Lab Number =>	29402
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

Pan Label =>	23	
Tare Weight of Pan =>	438.36	A
Wet Wt. of Sample & Tare =>	1208.88	В
Dry Wt. of Sample & Tare =>	904.68	С
Weight of Moisture (B-C) =>	304.2	D
Dry Wt. of Sample (C-A) =>	466.32	E
Percent Moisture (D/E)*100 =>	65.2	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Project Name: BRC Aquifer Testing			Client:	BRC		By: Doug Davis				
Project Number	r: 83173 Task:	4	Date:	6/2/07		Date Due	:			
				AA-28.cw	44-20-our 45-50	AA-20- 04-	Boring Number Depth			
					X	X	Water Content (ASTM 2216)			
					X	X	Dry Bulk Density (ASTM D2937)			
					X	X	Consol Total Porosity (ASTM D2435)			
							Flexible Wall (ASTM D5084) OUTSIDE SERVICE			
							Rigid Wall (ASTM D2434) OUTSIDE SERVICE			
					X	X	Specific Gravity (ASTM D 698)			
					R	Ø	Specific Gravity (ASTM C127)			
					X	X	Hydrometer (ASTM D422)			
					X	X	Sieve Anysis (ASTM D422)			
					X	X	Total Organic Carbon OUTSIDE SERVICE (ATLAS)			
				Supped 614	5	Shipped 6/4	Ren			
						, A	Remarks			

LABORATORY NUMBER: 29 403

LABORATORY WORK ORDER

FOR ACCOUNTING USE ONLY

Date Entered:

Entered By:

Project No: Project Name: Client Name: Client Ref./P.O.#: Special Instruction	Phase: 4	Sample Number: 29403	MPLE STATUS Requested Test Test in Progress Test Completed	Date Sampled: Date Received: Date Needed: Date Completed: Verified by:	6/2607 6/2/07 ASMO 6/18/07 6/21/07	
special manacine				-termes by:	4-1101	

	AS	PHALT 1	ESTING	
Usage	Qty.	99#	Status	
C123 Lt Wt Pieces/Agg		990715		
C127 Absorption/Gravity	2	990702	7103	07
CAL 205 Crushed Part		990712		
CAL 227 Cleanness TST		990711		
Clay Lumps/Friabl Part C-142		990714		
D2726 Weight/Absorption Core		991110		
Extract Bitumin D1856, 2172.310		991102		
Flat/Elong Part/Sieve 119, 120		990713		
Hveem Stability/Set of 3		991147		
Ignition Oven Calibration		996156		
Injurious Organic Matter C-40		990701		
LA Rattler CAL131		990706		
Lottman Test		991121		
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108		
Max Theoretical Specific Gravity D-2041		991112		
Methylene Blue Test		990132		
Microwave Asphalt Moist Content		996137		
Oil Content By Ignition Oven		996153		
Sand Equivalent C217		990308		
Specific Gravity C127/8 D854		990211		
Stabil Test/Premix Sample CAL 366		991104		
Unit Weight C29		990704		

MISC	. 01	HER		
Usage	Qty.	99#	Status	
Chloride Analysis		996020		
Corrosivity Analysis		991508		
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324		
pH Test		990319		
Sulfate Analysis		992090		
Unit Weight Fireproofing		991314		

CONCRETI	E & 1	MASON	RY TES	TING	TOOM
Usage	Qty.	99#	Status		
C942 Grout Strength (cylinder/prism strength)		990119			
Compressive Test 12x8x16 Prisms (12" width)		991005			9 6 6
Compressive Test 8x8x16 Prisms (8" width)		991003			LLWD
Compressive Test/Cored Spec		990809		J.	
Concrete Compressive Test		990803			
Drying Shrinkage (Set OF 3) C-157, CAL-530		990811			CCSD
Flex and Strength/Concrete Beam		990806			
Mortar Strength C-109		990118			
	OIL	TESTIN	IG		CCPW
Usage	_	y. 99#	_	tus	9 8
ASTM D1557 6" Method B, C and D		9901	04		
CBR 100% Compaction D1883, T180	\top	9902	09		
Check Point	T	9901	06		
Collapse Potential		9906	14		
Consolidation W/O time Rate/6 LD D2435	2	9906	13		
Correct Oversize Material in Sample CAL301		9902	03		
Direct Shear 1 Point		9906	08		
Direct Shear 3 Point		9906)9		
Harvard Miniature		9921	91		
Hydrometer Only	2	9903	05	_	
Moisture Determination Only	12		17		
Moisture Determination/Unit Weight	2	9903	16		
Plasticity Index		9903	10		
Resistivity Analysis		9903	18		
R-Value/Untreated Material/Field Sample CAL 301		9902)1		. 41
Sample Prep Materials		9925	_		23
sieve Analysis Wash #200 (117		9903			/ 4
ieve Analysis/Course & Fine	2	9903	ر اا		
Sulfate Sound (5) Sieve SZ (88		99070)8		
well Test FHA Specification (60 psi)		9903	12		source:
Unconfined Comp/Inc Moist D2166		9906	01		Sou Sup

DIUV D..... II.....

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From:	Jessi Henderson
	Sierra Testing Laboratories	Date:	June 4, 2007
	5040 Robert J. Mathews Suite 1	File:	
	El Dorado, CA 95762	Copies:	
1700	re sending: X Attached Unc	der Separate Co	over
Via:	Messenger First Class Mail	X United Pa	arcel Air Freight
Trans	smitted: X As Requested For Appro For Signatures For Revie	val w & Comment	For Your Use

REMARKS: Please run flexible wall (ASTM D5084) and rigid wall (ASTM D2434) on all of the following samples. For invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Sample Location	Sample Date	Laboratory Number	Shipped Date
AA-20-OW@30-31.5'	06/02/07	29403	06/4/07
AA-20-OW@50-51.5'	06/02/07	29403	06/4/07
AA-06@55-56.5'	06/03/07	29401	06/4/07
AA-06@60-61.5'	06/03/07	29401	06/4/07
B-4@80-81.5'	06/01/07	29402	06/4/07
AA-09-OW@55-56.5'	06/01/07	29402	06/4/07
AA-09-OW@70-71.5'	06/01/07	29402	06/4/07

If you have any questions please don't hesitate to call.

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-20-OW@34-35'; S-29403 @ 30.0 - 35.0'

June 7, 2007 Specific Gravity = 2.59

Silt with Sand (ML)

LL = ; PL = ; PI =

Gravel = 0%; Sand = 16%; Silt = 64%; Clay = 20%

0.01

0 001

Sieve size					% Retained						% Passing				
3" (75.0-mm)			100											
2" (50.0-mm)						0				100				
1-1/	2" (37.5 -m m)					0				100				
1" (2	25.0-mm)						0				100				
1/2"	(12.5-mm)						0				100				
	(9.5-mm)						0				100				
#4 (4.75-mm)						0				100				
	(2.00-mm)						0				100				
#16	(1.18-mm)						0				100				
	(425-µm)						0				100				
#50	(300-µm)						0				100				
#10	0 (150-μm)						2				98				
#200	0 (75-μm)						16				84				
	drometer	Anab	veie												
34-µ		Allai	y 515								55				
22-µ											46				
22-µ											36				
9-μr											32				
7-μι											27				
7-μι 3.4-											20				
	μιτι loids (<1-μm	`									16				
Con	ioius (>1-μiii	,									10				
	U. S. STANDAR	D SIEVE O	PENING, in.	U. S. STA	NDARD	SIEVE NUMB	ERS			HYDROMETER ANALYSIS					
40.	3 2 1.5	1	1/2 3/8	4	10	16	40 50	100	200						
10	U • • •		•								• • •	• •		•	
9	0			1-7-9		e in appropriate of	. 1	Mana							
8	0		Algeria						•						
2 70	0														
20 6 5 4 3	0		1.1.	, Lilii											
₹ _ 5			4	:			; :			•:					
<u> </u>	0									•	;				
4 رد	0 . ; :						gr. 91		- 17-	1 (
1 7	0		11111							1 0 0	•			•	
	Talah T		11.11			1111			100		•				
2	.0										11.	•	٠	_	
1	0					1	.: .= .:.		1					•	
	•			1		100									

GRAIN SIZE, mm

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 Report Date: 06/21/07

Sample No.:

29403

AA-20-OW @ 34 - 35'

Tech.: jlw

Sample Depth (ft.): Material Description:

Load (psf)	Consolidation (%)
100	0.00
100	-0.11
500	0.57
1000	1.23
2000	2.16
4000	3.42
8000	5.11
16000	7.13
32000	10.40
16000	10.09
8000	9.72
4000	9.29
2000	8.91

AA-20-OW @ 34 - 35'

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173
Project =>	BRC AQUIFER TESTING
Client =>	BRC
Phase =>	4
Sample Location =>	AA-20-OW @ 34 - 35'

Lab Number =>	29403
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

·		_
Pan Label =>	JOE-2	
Tare Weight of Pan =>	203.26	A
Wet Wt. of Sample & Tare =>	469.46	В
Dry Wt. of Sample & Tare =>	403.19	С
Weight of Moisture (B-C) =>	66.3	D
Dry Wt. of Sample (C-A) =>	199.93	E
Percent Moisture (D/E)*100 =>	33.1	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
1½"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Project Number 83173 Phase No. Tested By JLW Checked By JH	Moisture Density						
Lab Number 29403 Boring Number AA-20-OW Sample Depth 34-35 Height (inches) 3.5 Diameter (inches) 5.26 Volume 0.0440 Wt. of Sample At Field Moisture 2073.72 Wet Density (pcf) 103.9 Dry Density (pcf) 78.1 Container No. Wt. of Wet Sample Plus Tare 469.40 Wt. of Dry Sample Plus Tare 403.20 Tare (g) 203.26 Dry Wt. Of Sample (g) 199.94	Project Name	ВІ	RC AQUIFER TE	ESTING	Date	06/1	3/07
Boring Number			Phase No.	Tested By	JLW	Checked By	JH
Sample Depth 34-35 Height (inches) 3.5 Diameter (inches) 5.26 Volume 0.0440 Wt. of Sample 2073.72 At Field Moisture 2073.72 Wet Density (pcf) 103.9 Dry Density (pcf) 78.1 Container No. Wt. of Wet Sample Plus Tare 469.40 Wt. of Dry 403.20 Tare (g) 203.26 Dry Wt. Of 199.94							
Height (inches) 3.5							
Diameter (inches) 5.26							
Volume 0.0440 Wt. of Sample 2073.72 At Field Moisture 2073.72 Wet Density (pcf) 103.9 Dry Density (pcf) 78.1 Container No. Wt. of Wet Sample Plus Tare Sample Plus Tare 469.40 Wt. of Dry Sample Plus Tare 403.20 Tare (g) 203.26 Dry Wt. Of Sample (g) 199.94							
Wt. of Sample At Field Moisture 2073.72 Wet Density (pcf) 103.9 Dry Density (pcf) 78.1 Container No. Wt. of Wet Sample Plus Tare Sample Plus Tare 469.40 Wt. of Dry Sample Plus Tare 403.20 Tare (g) 203.26 Dry Wt. Of Sample (g) 199.94							
Wet Density (pcf) 103.9 Dry Density (pcf) 78.1 Container No. Wt. of Wet Sample Plus Tare 469.40 Wt. of Dry Sample Plus Tare 403.20 Tare (g) 203.26 Dry Wt. Of Sample (g) 199.94	Volume Wt. of Sample At Field Moisture						
Dry Density (pcf) 78.1							
Wt. of Wet 469.40 Sample Plus Tare 469.40 Wt. of Dry 203.20 Tare (g) 203.26 Dry Wt. Of 309.94	Dry Density (pcf)	78.1					
Sample Plus Tare 469.40 Wt. of Dry Sample Plus Tare 403.20 Tare (g) 203.26 Dry Wt. Of Sample (g) Sample (g) 199.94	Container No.						
Sample Plus Tare 403.20 Tare (g) 203.26 Dry Wt. Of Sample (g) 199.94	Wt. of Wet Sample Plus Tare	469.40					
	Sample Plus Tare	403.20					
	Tare (g)	203.26					ļ
Moisture Content, % 33.1%	Sample (g)	199.94					
	Moisture Content, %	33.1%					
							<u> </u>

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR TESTING MATERIALS

LABORATORY NO:

14462(j)

DATE:

June 20, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173-4

LAB ID: 29403

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION

ASTM 2974

SAMPLE NO.

LOCATION

DEPTH (feet)

ORGANIC CARBON

29403

AA-20-OW

34-35

1.60%

LABORATORY MANAGER

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

LAB NUMBER:

29403

BORING: DEPTH: AA-20-OW 34 - 35'

06/19/07

DATE:

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	Υ
Mass of Pycometer,Mf =>	224.4
Mass of Pycometer & Water,Ma =>	722.96
Temperature of Water when	
Ma above was Taken, Ta =>	20.4
Mass of Speciman & Pycnometer =>	264.28
Mass of Pycnometer, Mf =>	224.4
Mass of Oven-Dry Specimen, Mo =>	39.88
Mass of Pycnometer, Soil & Water, Mb =>	747.45
Temperature of Water when	
Mb Above was Taken, Tb =>	19.5

Prodedure

Record the mass of a clean dry pycnometer, Mf Record the mass of the pyc. and distilled water at calibration mark, Ma Record the temperature of the water to the nearest .5° C,Ta Record Mass of Pyc & Water at Calibration Mark, Ma

Water Density at Ta	0.99812
Water Density at Tb	0.99831
K Factor at Tb	1.0001

Ma at Tb	224.4947264
Sp Gr at Tb	2.591293047
Sp Gr at 20 C	2.591552177

SPECIFIC GRAVITY AT 20 C	2.591552177

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-20-OW@45-46'; S-29403 @ 45.0 - 50.0' Silt (ML)

June 7, 2007 Specific Gravity = 2.70

LL = ; PL = ; PI =

Gravel = 0%; Sand = 12%; Silt = 75%; Clay = 13%

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	0	100
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	0	100
#10 (2.00-mm)	0	100
#16 (1.1 8-mm)	0	100
#40 (425-μm)	0	100
#50 (300-μm)	1	99
#100 (150-µm)	6	94
#200 (75-μm)	12	88
Hydrometer Analysis		
29-μm		78
19-µm		76
11-μm		72
8-μm		67
6-μm		57
3.3-µm		13
Colloids (<1-μm)		-4
U. S. STANDARD SIEVE OPENING, in. U. S. 3 2 1.5 1 1/2 3/8 4	STANDARD SIEVE NUMBERS 10 16 40 50 100 200	HYDROMETER ANALYSIS
100	· • · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •
	•	
80		• •
		•
ž 60 · · · · · · · · · · · · · · · · · ·		
SS		
40		
DERCENT PASSING 40 40 40 40 40 40 40 40 40 40 40 40 40		
🗟 20 👫		
		•:
	$\mathcal{L}_{\mathbf{k}}$ and $\mathcal{L}_{\mathbf{k}}$	
→	,	0.01 0.001
100	. 1 . 0)1	0.01 0.001
100 10	. 1 , . 0;1	0.001
100 10	. 1 , . 0 1	0.01 0.001

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 Report Date:06/18/07

Sample No.: Sample Depth (ft.): 29403

AA-20-OW @ 45 - 46'

Material Description:

Load (psf)	Consolidation (%)
100	0.00
100	-1.89
500	-1.73
1000	-1.15
2000	-0.22
4000	0.86
8000	2.13
16000	3.79
32000	6.33
16000	5.86
4000	4.38
1000	2.69

Tech.: jlw

AA-20-OW @ 45 - 46'

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

LABORATORY NO:

14462(h)

DATE: June 15, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29403

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO. **LOCATION** DEPTH (feet) ORGANIC CARBON 29403 AA-20-OW 45-46 4.50%

LABORATORY MANAGER

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29403
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	AA-20-OW @ 45 - 46'	Tested By =>	JLW
		Reviewed By =>	JH

Pan Label =>	НВ	
Tare Weight of Pan =>	179.26	
Wet Wt. of Sample & Tare =>	679.97	В
Dry Wt. of Sample & Tare =>	562.68	С
Weight of Moisture (B-C) =>	117.3	
Dry Wt. of Sample (C-A) =>	383.42	E
Percent Moisture (D/E)*100 =>	30.6	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 ams

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Moisture Density Project Name BRC AQUIFER TESTING Date 06/14/07										
Project Name	BI	RC AQUIFER	G	Date	06/1	4/07				
Project Number Lab Number	83173 29403	Phase No.		Tested By	JLW	Checked By	JH			
Boring Number	AA-20-OW									
Sample Depth	45-46'									
Height (inches)	4.9									
Diameter (inches)	5.01									
Volume	0.0559									
Wt. of Sample At Field Moisture	2938.95									
Wet Density (pcf)	115.9									
Dry Density (pcf)	88.7									
Container No.										
Wt. of Wet Sample Plus Tare	680.00									
Sample Plus Tare Wt. of Dry Sample Plus Tare	562.68									
Tare (g) Dry Wt. Of	179.30		*							
Dry Wt. Of Sample (g)	383.38									
Moisture Content, %	30.6%									

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29403

AA-20-OW

BORING: DEPTH:

45 - 46'

DATE:

06/13/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	221.22
Mass of Pycometer & Water,Ma =>	719.19
Temperature of Water when	
Ma above was Taken, Ta =>	22.7
Mass of Speciman & Pycnometer =>	268.62
Mass of Pycnometer, Mf =>	221.09
Mass of Oven-Dry Specimen, Mo =>	47.53
Mass of Pycnometer, Soil & Water, Mb =>	749.14
Temperature of Water when	
Mb Above was Taken, Tb =>	21.0

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta
Water Density at Tb
K Factor at Tb

0.99761	
0.99799	_
0.99979	

Ma at Tb Sp Gr at Tb Sp Gr at 20 C 221.4092286 2.703640501 2.703072736

SPECIFIC GRAVITY AT 20 C

2.703072736

Project Number: 83173 Task: 4			Date	6/3	107	Da	ate Due:		
					AA-06	CA VE	AA.vc	AA-06	Boring Number
					65	61.5	56.5 56.5	25-05	Depth
					\mathbb{X}			X	Water Content (ASTM 2216)
					X			D	Dry Bulk Density (ASTM D2937)
					X			1/2	Total Porosity (ASTM D2435)
							\nearrow		Flexible Wall (ASTM D5084) OUTSIDE SERVICE
							N		Rigid Wall (ASTM D2434) OUTSIDE SERVICE
					X			X	Specific Gravity (ASTM D 698)
					8			()	Specific Gravity (ASTM C127)
					×			X	Hydrometer (ASTM D422)
					\times	``		X	Sieve Anysis (ASTM D422)
				2	X				Total Organic Carbon OUTSIDE SERVICE (ATLAS)
								1	200 TUASIA ?
						Shipped		†	Billea
						a	pred	3/2/2	Billed:
						6/4	6	14.1	6/2/ Rem
							4	3. 3.	18/07- 0/07-
								10.77	
				LABORAT	ORY NU	MBER:	2940	1	

Client: BRC

Project Name: BRC Aquifer Testing

By: Doug Davis

LABORATORY WORK ORDER

								į	/
K	L	EI	N	F	E	L	D	E	R

EADORATORT TORK		NDEIN										-	_	_		
Project No: 83173 Project Name: BCC AGC Client Name: BUC	.7		<u></u>	Phase:	Sample Number:	1 march 2	AMPLE	STATUS		Date Sampled:	6/3/0 6/3/0 1884 6/18/	7	>			
Project Name: DCC AGU)I re	-n	Jush	118'_	29401	_ 🛮	Re	quested Te	st	Date Received:	6/ 3/6	25		- 100		
Client Name: BILC							Te	st in Progre	ss	Date Needed:	ASVI					
Client Ref./P.O.#:						\boxtimes	Te	st Complete	d	Date Needed: B//CC D ate Complet ed:	6/18/	10-	7	20		
Special Instructions:								22		Verified By:	,					
special instructions.										roinica by.	-					
	AC	PHALT T	ECTING			CONCRET	E 2	MASONI	Y TESTING				10	1	Г	T
Usage	Qty.		Status		Usage	CONCRE	Qty.	99#	Status				NDOT	1		
C123 Lt Wt Pieces/Agg		990715	312.03		C942 Grout Strength (cylinder/p	ricm strength)	_	990119	Julios							1
C127 Absorption/Gravity	3	900702	990	372	Compressive Test 12x8x16 Prism			991005					10	1		red.
CAL 205 Crushed Part	9	990712	LN	<u> </u>	Compressive Test 8x8x16 Prisms			991003				OM)	AASHTO		ONE	Date Entered.
CAL 227 Cleanness TST		990711			Compressive Test/Cored Spec	, to many		990809							FOR ACCOUNTING USE ONLY	Date
Clay Lumps/Friabl Part C-142		990714			Concrete Compressive Test			990803							VIING	
D2726 Weight/Absorption Core	-	991110			Drying Shrinkage (Set OF 3) C-1	57 CAL-530		990811				CSD	UBC		000	
Extract Bitumin D1856, 2172.310		991102			Flex and Strength/Concrete Bear			990806							OR A	
Flat/Elong Part/Sieve 119, 120	- T	990713			Mortar Strength C-109			990118				LJ	Ш		1	1
Hveem Stability/Set of 3	1	991147									==	*	×	ē		142
Ignition Oven Colibration		996156						TESTIN					ASTM			Entered By.
Injurious Organic Matter C-40		990701			Usage		- 4	ty. 99#	Status					J		Enter
LA Rattler CAL131	1	990706			ASTM D1557 6" Method B, C and		+	99010							_	
Lottman Test		991121			CBR 100% Compaction D1883, T1	180	-	99020				1	íí	110	1	ĭ
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108			Check Point		-	99010								
Mux Theoretical Specific Gravity D-2041	1	991112			Collapse Potential	D D0405	+	99061							- 1	
Methylene Blue Test		990132			Consolidation W/O time Rate/6 L		4	99020	_							
Microwave Asphalt Moist Content	-	996137			Correct Oversize Material in Samp Direct Shear 1 Point	DIE CALSUT	+	99060						3	1	
Dil Content By Ignition Oven	1	996153			Direct Shear 3 Point		+	99060						53		
Sand Equivalent C217		990308			Harvard Miniature		+	99219						1		13
Specific Gravity C127/8 D854	-	990211			Hydrometer Only		+		4.5					8		2
stabil Test/Premix Sample CAL 366		991104			Moisture Determination Only		1							_		2
Jnit Weight C29		990704			Moisture Determination/Unit Weig	oht	- 1	99031		-				8		2
	-				Plasticity Index	y	+	99031								1
		MISC. O	THER		Resistivity Analysis		+	99031						0	0	10
Usage		Qty		Status	R-Value/Untreated Material/Field	Sample CAL 3	01	99020	_					9	71/1/2	21/12/2
.hloride Analysis			996020		Sample Prep Materials		+	99250				N/A	#	4	3	à'\
Corrosivity Analysis			991508		Sieve Analysis Wash #200 C117		\top	99030				Z	3	A	7	0,0
orrosivity, Resistivity, Sodium Sulfate, Solu	ubility,	p11*	990324		Sieve Analysis/Course & Fine		5							ion:	rial.	Ì
oH Test			990319		Sulfate Sound (5) Sieve SZ C88		1	99070					1727	, oca	Mate	/by:
ulfate Analysis			992090		Swell Test FHA Specification (60 p	osi)		99031				re.	Supplier:	Sample Location:	Type of Material:	Sampled by:
Init Weight Fireproofing	34-24		991314		Unconfined Comp/Inc Moist D216		1	99060	_			So	Sup	San	IYP.	Sal

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker	From:	Jessi Henderson
	Sierra Testing Laboratories	Date:	June 4, 2007
	5040 Robert J. Mathews Suite 1	File:	
	El Dorado, CA 95762	Copies:	: <u></u>
	ect: BRC Aquifer Testing: Flexible and Rigid Wall Testing re sending: X Attached U	Inder Separate Co	over
Via:	Messenger First Class Mail	X United P	arcel Air Freight
Trans	smitted: X As Requested For App For Signatures For Rev	oroval view & Comment	For Your Use

REMARKS: Please run flexible wall (ASTM D5084) and rigid wall (ASTM D2434) on all of the following samples. For invoicing purposes please reference 83173-4: BRC Aquifer Testing.

Sample Location	Sample Date	Laboratory Number	Shipped Date
AA-20-OW@30-31.5'	06/02/07	29403	06/4/07
AA-20-OW@50-51.5'	06/02/07	29403	06/4/07
AA-06@55-56.5'	06/03/07	29401	06/4/07
AA-06@60-61.5'	06/03/07	29401	06/4/07
B-4@80-81.5'	06/01/07	29402	06/4/07
AA-09-OW@55-56.5'	06/01/07	29402	06/4/07
AA-09-OW@70-71.5'	06/01/07	29402	06/4/07

If you have any questions please don't hesitate to call.

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-06@51-52.5'; S-29401 @ 50.0 - 55.0'

June 11, 2007 Specific Gravity = 2.85

Silt with Sand (ML)

Gravel = 14%; Sand = 18%; Silt = 51%; Clay = 17%

LL = ; PL = ; PI =

% Retained Sieve size % Passing 3" (75.0-mm) 0 100 2" (50.0-mm) 0 100 1-1/2" (37.5-mm) 0 100 1" (25.0-mm) 0 100 1/2" (12.5-mm) 3 97 8 92 3/8" (9.5-mm) #4 (4.75-mm) 14 86 #10 (2.00-mm) 19 81 23 77 #16 (1.18-mm) #40 (425-µm) 28 72 29 #50 (300-µm) 71 31 $#100 (150-\mu m)$ 69 32 #200 (75-µm) 68 **Hydrometer Analysis** 29-μm 42 19-µm 37 33 11-µm 8-µm 30 6-µm 24 3.0-um 17 Colloids (<1-µm) 6 100 200 100

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR TESTING MATERIALS

LABORATORY NO:

14462(c)

DATE: June 13, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29401

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO. **LOCATION** DEPTH (feet)

ORGANIC CARBON

29401

AA-06

51-52.5

4.00%

LABORATORY MANAGER

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173
Project =>	BRC AQUIFER TESTING
Client =>	BRC
Phase =>	4
Sample Location =>	AA - 06 @ 51 - 52.5'

Lab Number =>	29401
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

•		
Pan Label =>	EL	
Tare Weight of Pan =>	575.8	A
Wet Wt. of Sample & Tare =>	920.6	В
Dry Wt. of Sample & Tare =>	843.8	С
Weight of Moisture (B-C) =>	76.8	D
Dry Wt. of Sample (C-A) =>	268	E
Percent Moisture (D/E)*100 =>	28.7	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample	
No. 10	100 to 200 gms	
No. 4	300 to 500 gms	
3/4"	500 to 1000 gms	
11/2"	1500 to 3000 gms	
3"	5000 to 10000 gms	

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173 29401

LAB NUMBER: BORING:

AA-06

DEPTH:

51 - 52.5' 06/13/07

DATE: TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	221.22
Mass of Pycometer & Water,Ma =>	719.19
Temperature of Water when	
Ma above was Taken, Ta =>	22.7
Mass of Speciman & Pycnometer =>	271.65
Mass of Pycnometer, Mf =>	221.17
Mass of Oven-Dry Specimen, Mo =>	50.48
Mass of Pycnometer, Soil & Water, Mb =>	751.88
Temperature of Water when	
Mb Above was Taken, Tb =>	20.7

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99761
Water Density at Tb	0.99806
K Factor at Tb	0.99985

Ma at Tb	221.4440865
Sp Gr at Tb	2.837549185
Sp Gr at 20 C	2.837123553

SPECIFIC GRAVITY AT 20 C 2.837123553
--

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(i)

DATE: June 20, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173

LAB ID: 29401

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO. LOCATION DEPTH (feet) ORGANIC CARBON 61.5-62.0 3.70% 29401 AA-06

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-06@61-62.5'; S-29401 @ 60.0 - 65.0'

June 14, 2007 Specific Gravity = 2.85

Silt (ML)

Gravel = 0%; Sand = 3%; Silt = 71%; Clay = 26%

LL = ; PL = ; PI =

Sieve size		% Retained		% Passing	
3" (75.0-mm)		0		100	-
2" (50.0-mm)		0		100	
1-1/2" (37.5-mm)		0		100	
1" (25.0-mm)		0		100	
1/2" (12.5-mm)		0		100	
3/8" (9.5-mm)		0		100	
#4 (4.75-mm)		0		100	
#10 (2.00-mm)		0		100	
#16 (1.18-mm)		1		99	
#40 (425-µm)		1		99	
#50 (300-µm)		2		98	
#100 (150-μm)		2		98	
#200 (75-µm)		3		97	
Hydrometer Ar	alysis				_
26-μm				94	
17-μm				89	
10-μm				85	
7-μm				79	
5-μm				76	
3.0-μm				26	
Colloids (<1-μm)				7	
U. S. STANDARD SI		ANDARD SIEVE NUMBERS		OMETER ANALYSIS	
3 2 1.5 1	1/2 3/8 4	10 16 40 50 100	0 200		
		A Allia in it		, , , , , , , , , , , , , , , , , , ,	•
90		The second secon			
80				•	
ت 70 ما				J	
DERCENT PASSING 60 60 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50					
50					
5 40 · · · · · · · · · · · · · · · · · ·					
3 0 + ! : ;					
20				•	
10		are the second	$\hat{\mathbf{r}} = \mathbf{r}$	•	
0	<u> </u>				•
100	10	1	0.1	0.01	0.001

One-Dimensional Consolidation Properties of Soils ASTM D 2435-04

Project Name: BRC AQUIFER TESTING

Project No.: 83173-4 Report Date: 06/19/07

Sample No.:

29401

Sample Depth (ft.): Sample Depth (ft.): 61.5 - 62'
Material Description: White Fat Clay

Tech.: jlw

Load (psf)	Consolidation (%)
100	0.00
100	-1.19
500	-0.81
1000	-0.47
2000	-0.06
4000	0.82
8000	1.88
16000	3.41
32000	8.31
64000	16.58
32000	15.96
16000	14.88
8000	13.53
4000	12.32

AA-06 @ 61.5 - 62'

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29401 AA - 06

BORING:

61.5 - 62'

DEPTH: DATE:

06/14/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	11
Mass of Pycometer,Mf =>	221.68
Mass of Pycometer & Water,Ma =>	719.09
Temperature of Water when	
Ma above was Taken, Ta =>	22.7
Mass of Speciman & Pycnometer =>	262.24
Mass of Pycnometer, Mf =>	221.07
Mass of Oven-Dry Specimen, Mo =>	41.17
Mass of Pycnometer, Soil & Water, Mb =>	745.13
Temperature of Water when	
Mb Above was Taken, Tb =>	20.8

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99814
Water Density at Tb	0.99804
K Factor at Tb	0.99983

Ma at Tb	221.630259
Sp Gr at Tb	2.721083939
Sp Gr at 20 C	2.720621355

SPECIFIC GRAVITY AT 20 C	2.720621355

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	
Project =>	BRC AQUIFER TESTING
Client =>	BRC
Phase =>	4
Sample Location =>	

ID COIL-YOUNE	DATE MINTONEO A
Lab Number =>	29401
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

911	
198.4	A
294	В
268.2	С
25.8	D
69.8	E
37.0	F
	198.4 294 268.2 25.8 69.8

539K
32.6
110.29
95.36
14.9
62.76
23.8

TOTAL MOISTURE CONTENT = 60.8%

Sieve Retaining More Than About	Recommended Minimum Mass
10% of Sample	of Moist Sample
No. 10	100 to 200 gms
	200 4- 500

No. 10 100 to 200 gms
No. 4 300 to 500 gms
3/4" 500 to 1000 gms
11/2" 1500 to 3000 gms
3" 5000 to 10000 gms

Dry @ 110 ± 5° C to a constant mass

If sample contains Gypsum or other materials having hydrated water

Then dry @ 60 ± 5°C

Project Name	Moisture Density BRC AQUIFER TESTING			Date	06/07/07		
. rojest rame					06/07/0		
Project Number Lab Number	83173 29401	Phase No.	Tested By	JLW	Checked By	JH	
Boring Number	AA-06						
Sample Depth	61.5-62						
Height (inches)	3.79						
Diameter (inches)	5.09						
Volume Wt. of Sample	0.0446			· · · · · · · · · · · · · · · · · · ·			
At Field Moisture	2153.40			·			
Wet Density (pcf)	106.4						
Dry Density (pcf)	77 .7						
Container No.							
Wt. of Wet Sample Plus Tare	294.00						
Wt. of Dry Sample Plus Tare	268.21						
Tare (g) Dry Wt. Of Sample (g)	198.40						
Sample (g)	69.81						
Moisture Content, %	36.9%						
						<u> </u>	

Project Name: BRC Aquifer Testing	Client: I	BRC	By: Doug Davis
Project Number: 83173 Task: 4	Date:	6-4-07	Date Due:
		7 -08 20- 48	Boring Number
		-08-0WA 35-40 70-41.5	15-16-5 Depth
			Water Content (ASTM 2216)
			Dry Bulk Density (ASTM D2937)
		No.	Total Porosity (ASTM D2435)
			Flexible Wall (ASTM D5084) OUTSIDE SERVICE
			Rigid Wall (ASTM D2434) OUTSIDE SERVICE
			Specific Gravity (ASTM D 698)
			Specific Gravity (ASTM C127)
			Hydrometer (ASTM D422)
			Sieve Anysis (ASTM D422)
			Total Organic Carbon OUTSIDE SERVICE (ATLAS)
		Shipped of	Remarks Shipped 6/5
		35-37	

LABORATORY NUMBER:

29409

LABORATORY WORK ORDER

FOR ACCOUNTING USE ONLY
Date Entered:

Sample Location: Type of Material:

Sampled by: Project Manager:

Project No: Project Name: Client Name:	BRC AQUIFBR BRC	Phase: 4	Sample Number: 29404	S# ☑ ☑	Requested Test Test in Progress	Date Sampled: Date Received: Date Needed:	6/4/07 6/4/07 ASAP
Client Ref./P.O.#:	ä				Test Completed	Date Completed:	6/25/0F
Special Instruction	15:					Verified By:	DA-

ASPHALT TESTING				
Usage	Qty.	99#	Status	
C123 Lt Wt Pieces/Agg		990715		
C127 Absorption/Gravity	4	990700	990307	
CAL 205 Crushed Part		990712		
CAL 227 Cleanness TST		990711		
Clay Lumps/Friabl Part C-142		990714		
D2726 Weight/Absorption Core		991110		
Extract Bitumin D1856, 2172.310		991102		
Flat/Elong Part/Sieve 119, 120		990713		
Hveem Stability/Set of 3		991147		
Ignition Oven Calibration		996156		
Injurious Organic Matter C-40		990701		
LA Rattler CAL131		990706		
Lottman Test		991121		
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108		
Max Theoretical Specific Gravity D-2041		991112		
Methylene Blue Test		990132		
Microwave Asphalt Moist Content		996137		
Oil Content By Ignition Oven		996153		
Sand Equivalent C217		990308		
Specific Gravity C127/8 D854		990211		
Stabil Test/Premix Sample CAL 366		991104		
Unit Weight C29		990704		

MISC. OTHER					
Usage	Qty.	99#	Status		
Chloride Analysis ORGANIC CARROWS	2	2000	trus		
Corrosivity Analysis		991508			
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324			
pH Test		990319			
Sulfate Analysis		992090			
Unit Weight Fireproofing		991314			

CONCRET	E & 1	MASON	RY 1	TESTIN	G			NDOT	
Usage	Qty.	99#	St	atus				~	
C942 Grout Strength (cylinder/prism strength)	TERRE	990119						U	
Compressive Test 12x8x16 Prisms (12" width)		991005						410	
Compressive Test 8x8x16 Prisms (8" width)		991003			There a		I M	AASHTO	
Compressive Test/Cored Spec		990809							
Concrete Compressive Test		990803							
Drying Shrinkage (Set OF 3) C-157, CAL-530		990811					SS	UBC	
Flex and Strength/Concrete Beam		990806					Ī	$\vec{\Box}$	
Mortar Strength C-109		990118] _,	L.,	
	OIL	S TESTII	NG		3.200		_ ≥	ASTM	ther
Usage	_	ty. 99		Status			1 5	Ø. ₹	<u>ر</u>
ASTM D1557 6" Method B, C and D	\top	9901	04				70	1	
CBR 100% Compaction D1883, T180		9902	09						
Check Point		9901	06						1
Collapse Potential		9906	14				1		1
Consolidation W/O time Rate/6 LD D2435		9906	13						7
Correct Oversize Material in Sample CAL301		9902	03						5
Direct Shear 1 Point		9906	08						
Direct Shear 3 Point		9906	09						1
Harvard Miniature		9921	91						(
Hydrometer Only	12		05	>	1				
Moisture Determination Only	2	2 9903	17	$\overline{}$	1				7
Moisture Determination/Unit Weight	T	9903	116						
Plasticity Index		9903	10						*
Resistivity Analysis		9903	18						
R-Value/Untreated Material/Field Sample CAL 30	1	9902	01					_	*
Sample Prep Materials		9925	80			311.5	4	*	
Sieve Analysis Wash #200 C117		9903	04				3	. ~	
Sieve Analysis/Course & Fine	12	2 9903	01	> <					
Sulfate Sound (5) Sieve SZ C88		9907	08						
Swell Test FHA Specification (60 psi)		9903	12				rce:	Supplier:	C
Unconfined Comp/Inc Moist D2166		9906	01			=====	Sou	Sup	٠,

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker					From:	Jessi Henderson		_			
	Sierra Testing Laboratories 5040 Robert J. Mathews Suite 1					_	Date:	June 5, 200	June 5, 2007			
					_ File:	g		_				
	El Dorado,	CA	95762					_	Copies:			_
ornes.	subject: BRC Aquifer Testing: Flexible and Rigid Wall Testing Ve are sending: X Attached Under Separate Cover											
Via:		Mes	senger		First 0	Class Ma	ail	X	United P	arcel _	Air Freight	
Trans	mitted:	<u>x</u>		quested Signature	es	_		pproval eview &	Comment	For You	ur Use	
REMA	ARKS: Pleas	se ru	ın flexible	wall (AS	TM D5084) and rig	jid wal	I (ASTM	D2434) on	all of the follo	owing samples. For	

Sample Location	Sample Date	Laboratory Number	Shipped Date
AA-08-OW@15-16.5'	06/04/07	29404	06/5/07
AA-08-OW@40-41.5'	06/04/07	29404	06/5/07

If you have any questions please don't hesitate to call.

invoicing purposes please reference 83173-4: BRC Aquifer Testing.

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-08-OWA@13-15'; S-29404 @ 10.0 - 15.0'

June 7, 2007 Specific Gravity = 2.73

Silty Sand with Gravel (SM)

Gravel = 21%; Sand = 50%; Silt = 28%; Clay = 1%

LL = ; PL = ; PI =

Sieve size		% Retain	ed	% Passing	
3" (75.0-mm)		0		100	
2" (50.0-mm)		0		100	
1-1/2" (37.5-mm)		2		98	
l" (25.0-mm)		4		96	
1/2" (12.5-mm)		7		93	
3/8" (9.5-mm)		10		90	
#4 (4.75-mm)		21		79	
#10 (2.00-mm)		46		54	
#16 (1.18-mm)		53		47	
#40 (425-μm)		63		37	
#50 (300-μm)		65		35	
#100 (150-µm)		69		31	
#200 (75-μm)		71		29	
•	ois.	, ,		/	
Hydrometer Analy 32-µm	<u> </u>		·	3	
				2	
21-μm				2 2	
13-μm					
10-μm				!	
7-μm				1	
3.4-μm				1	
Colloids (<1-μm)				0	
U. S. STANDARD SIEVE OP	ENING, in. U.S. STAN	DARD SIEVE NUMBERS		HYDROMETER ANALYSIS	
		10 16 40 50			
100	• • • • • • • • • • • • • • • • • • • •	• •		• • • • •	•
90					
80					
<u>9</u> 70					
S 60 :		i e e e Se e e e e e e e e e e e e e e e			
4		•			
Z 50 · · · · · · · · · · · · · · · Z		•			
9 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ter en e		
30				e de la companya de l	
20				:	
10					
0				• • • • •	•
100	10	1	0.1	0.01	0.001

GRAIN SIZE, mm

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-08-OWA@35-37'; S-29404 @ 35.0 - 40.0'

June 7, 2007 Specific Gravity = 2.73

Silty Sand with Gravel (SM)

Gravel = 16%; Sand = 54%; Silt = 25%; Clay = 5%

0.01

0.001

LL = ; PL = ; PI =

Sieve size			% Retain	ed	% Passing
3" (75.0-mm)			0		100
2" (50.0-mm)			0		100
1-1/2" (37.5-mm)			0		100
1" (25.0-mm)			2		98
1/2" (12.5-mm)			4		96
3/8" (9.5-mm)			7		93
#4 (4.75-mm)			16		84
#10 (2.00-mm)			18		82
#16 (1.18-mm)			23		77
#40 (425-µm)			43		57
#50 (300-µm)			53		47
#100 (150-μm)			65		35
#200 (75-µm)			70		30
Hydrometer A	Analysis				
34-μm					13
22-μm					11
13-µm					9
9-µm					9
7-μm					7
3.2-μm					5
Colloids (<1-µm)					3
U. S. STANDARD	SIEVE OPENING, in.	U. S. STANDA	RD SIEVE NUMBERS		HYDROMETER ANALYSIS
3 2 1.5	1 1/2 3/8	4 10	16 40 50	100 200	
100	•				• • • • • • • • • • • •
90		<u> </u>			
80		•			
	1 1		•		
70 60 50 40		****	1		
60	1 11.1				
50			•		
40					
30				•	
1 1 1			1. *	· · · · · · · · · · · · · · · · · · ·	
20					
10	1		2.00		•:

GRAIN SIZE, mm

SPECIFIC GRAVITY OF COARSE AND FINE AGGREGATE ASTM 127 & 128 29404 Job # => 83173 Lab Number => Project => **BRC Aquifer Testing** Date Sampled => Client => BRC Date Received => Sampled By => Phase => Sample Location => AA-08-OWA @ 35 - 37' Tested By => JLW Reviewed By =>

<u> </u>	COARSE AGGREGA	ATE
Dry Wt. of Sample A≔>	1185.7	
SSD Wt. of Sample B=>	1231.1	
Wt. SSD Under Water C=>	737.3	Averages
Bulk Sp Gr. A/(B-C) =>	2,401	2.401
Bulk SSD B/(B-C) =>	2.493	2.493
Apparent Sp Gr A/(A-C) =>	2.644	2.644
Absorption ((B-A)/A)*100 =>	3.8	3.8

_	SPECIFIC GRAVITY	OF COARSI	E AND FINE AGGREGA	ATE ASTM 127 & 128
Job # =>	83173		Lab Number ≂>	29404
Project =>	BRC Aquifer Testing	•	Date Sampled ≕>	
Client =>	BRC		Date Received =>	
Phase =>	4		Sampled By ≃>	
Sample Location =>	AA-08-OWA @ 1	3 - 15'	Tested By =>	JLW
			Reviewed By =>	

	COARSE AGGREGA	ATE
Dry Wt. of Sample A=>	2132.5	
SSD Wt. of Sample B=>	2225	
Wt. SSD Under Water C=>	1327	Averages
Bulk Sp Gr. A/(B-C) =>	2.375	2.375
Bulk SSD B/(B-C) =>	2.478	2.478
Apparent Sp Gr A/(A-C) =>	2.647	2.647
Absorption ((B-A)/A)*100 =>	4.3	4.3

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(k)

DATE: June 20, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173-4

LAB ID: 29404

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION

ASTM 2974

SAMPLE NO.	LOCATION	DEPTH (feet)	ORGANIC CARBON
29404	AA-08-OWA	13-15	0.70%
29404	AA-08-OWA	35-37	0.70%

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29404

BORING: AA-08-OWA DEPTH:

35 - 37'

DATE:

06/15/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	224.41
Mass of Pycometer & Water,Ma =>	722.89
Temperature of Water when	
Ma above was Taken, Ta =>	20.7
Mass of Speciman & Pycnometer =>	328.57
Mass of Pycnometer, Mf =>	224.41
Mass of Oven-Dry Specimen, Mo =>	104.16
Mass of Pycnometer, Soil & Water, Mb =>	788.85
Temperature of Water when	
Mb Above was Taken, Tb =>	19.5

Prodedure

Record the mass of a clean dry pycnometer, Mf Record the mass of the pyc. and distilled water at calibration mark, Ma Record the temperature of the water to the nearest .5° C,Ta Record Mass of Pyc & Water at Calibration Mark, Ma

Water Density at Ta	0.99806
Water Density at Tb	0.99831
K Factor at Tb	1.0001

Ma at Tb	224.53462
Sp Gr at Tb	2.726701571
Sp Gr at 20 C	2.726974241

74241
•

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER: 83173

LAB NUMBER: 29404 BORING: AA-08-OWA

DEPTH: 13 - 15'
DATE: 06/15/07

TECHNICIAN: JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	221.68
Mass of Pycometer & Water,Ma =>	719.14
Temperature of Water when	
Ma above was Taken, Ta =>	20.3
Mass of Speciman & Pycnometer =>	319.53
Mass of Pycnometer, Mf =>	220.91
Mass of Oven-Dry Specimen, Mo =>	98.62
Mass of Pycnometer, Soil & Water, Mb =>	781.57
Temperature of Water when	
Mb Above was Taken, Tb =>	19.5

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99814
Water Density at Tb	0.99831
K Factor at Tb	1.0001

Ma at Tb	221.7645682
Sp Gr at Tb	2.725062172
Sp Gr at 20 C	2.725334678

SPECIFIC GRAVITY AT 20 C 2.725334678

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29404
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	AA-08-OWA @ 35 - 37	Tested By =>	JLW
		Reviewed By =>	JH

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173
Project =>	BRC AQUIFER TESTING
Client =>	BRC
Phase =>	4
Sample Location =>	AA-08-OWA @ 13 - 15

Lab Number =>	29404
Date Sampled =>	NR
Date Received =>	
Sampled By =>	NR
Tested By =>	JLW
Reviewed By =>	JH

Pan Label =>	SMALL	
Tare Weight of Pan =>	530.6	A
Wet Wt. of Sample & Tare =>	1784.5	В
Dry Wt. of Sample & Tare =>	1616.31	c
Weight of Moisture (B-C) =>	168.2	D
Dry Wt. of Sample (C-A) =>	1085.71	E
Percent Moisture (D/E)*100 =>	15.5	F

Sieve Retaining More Than About Recommended Minimum Mass

10% or Sample	or moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4"	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 \pm 5°C

Proje	ect Na	ime:	BKC	Aqui	ter I	estin	9	Client: BRC					Davis			
Proje	ct Nu	ımbe	r: 83	173	Task:	4		Date: 6-5-07			1 B					
													82 th		80-08	Boring Number
													1-08-0008 35-365		Dr.00.	Depth
															X	Water Content (ASTM 2216)
															Ø	Dry Bulk Density (ASTM D2937)
															P	Total Porosity (ASTM D2435)
																Flexible Wall (ASTM D5084) OUTSIDE SERVICE
													>			Rigid Wall (ASTM D2434) OUTSIDE SERVICE
															X	Specific Gravity (ASTM D 698)
															X	Specific Gravity (ASTM C127)
														,	X	Hydrometer (ASTM D422)
														/	X	Sieve Anysis (ASTM D422)
														1	X	Total Organic Carbon OUTSIDE SERVICE (ATLAS)
													Shippea		Œ)	
													red		1551	
													6		(5)	Remarks
												0.	17/0			arks
													7			

LABORATORY NUMBER: 29413

LABORATORY WORK ORDER

FOR ACCOUNTING USE ONLY
Date Entered:

Project No: 83 17-3 Phase: 4	Sample Number:	SAMPLE STA	ATUS Da	ate Sampled:	6-5-07
Project Name: BRE Aquifor Test	AA 30-35'		ested Test Do	ate Received:	6-5-07
Client Name: BPC	35-36,5	Test in	Progress Do	nte Needed:	ASAP
Client Ref./P.O.#:	29413	Test Co	ompleted Do	nte Completed:	6/21/07
Special Instructions:			Ve	rified By:	ar

ASPHALT TESTING						
Usage	Qty.	99#	Status			
C123 Lt Wt Pieces/Agg		990715				
C127 Absorption/Gravity	2	990702	1903	40		
CAL 205 Crushed Part		990712				
CAL 227 Cleanness TST		990711				
Clay Lumps/Friabl Part C-142		990714				
D2726 Weight/Absorption Core		991110				
Extract Bitumin D1856, 2172.310		991102				
Flat/Elong Part/Sieve 119, 120		990713				
Hveem Stability/Set of 3		991147				
Ignition Oven Calibration		996156				
Injurious Organic Matter C-40		990701				
LA Rattler CAL131		990706				
Lottman Test		991121				
Marshall Stab/Flow D-1599 (Set of 3)/Lab		991108				
Max Theoretical Specific Gravity D-2041		991112				
Methylene Blue Test		990132				
Microwave Asphalt Moist Content		996137				
Oil Content By Ignition Oven		996153				
Sand Equivalent C217		990308				
Specific Gravity C127/8 D854		990211				
Stabil Test/Premix Sample CAL 366		991104				
Unit Weight C29		990704				

MISC. OTHER				
Usage	Qty.	99#	Status	
Chloride Analysis		996020		
Corrosivity Analysis		991508		
Corrosivity, Resistivity, Sodium Sulfate, Solubility, p11*		990324		
pH Test		990319		
Sulfate Analysis		992090		
Unit Weight Fireproofing		991314		

CONCRET	E & 1	NASONI	RY TEST	ING	700
Usage	Qty.	99#	Status		
(942 Grout Strength (cylinder/prism strength)		990119			L_J
Compressive Test 12x8x16 Prisms (12" width)		991005			0110
Compressive Test 8x8x16 Prisms (8" width)		991003			LLWD
Compressive Test/Cored Spec		990809			
Concrete Compressive Test		990803			
Drying Shrinkage (Set OF 3) C-157, CAL-530		990811			CCSD
Flex and Strength/Concrete Beam		990806			
Mortar Strength C-109		990118			
	SOILS	TESTIN	IG		₹ €
Usage	Qt	y. 99#	Statu	is	
ASTM D1557 6" Method B, C and D		99010)4		-' }
CBR 100% Compaction D1883, T180		99020)9		
Check Point		99010)6		
Collapse Potential		99061	14		
Consolidation W/O time Rate/6 LD D2435		99061	3		
Correct Oversize Material in Sample CAL301		99020)3		
Direct Shear 1 Point		99060	08		
Direct Shear 3 Point		99060)9		
Harvard Miniature		99219)1		
Hydrometer Only	1	99030)5 >		Orecommon Americano
Moisture Determination Only		99031	7 >	-	
Moisture Determination/Unit Weight	3	99031	6		
Plasticity Index		99031	0		
Resistivity Analysis		99031	8		
R-Value/Untreated Material/Field Sample CAL 30)1	99020)1		4 4
Sample Prep Materials	2	99250)8		
Sieve Analysis Wash #200 C117		99030)4		
Sieve Analysis/Course & Fine		99030			
Sulfate Sound (5) Sieve SZ C88		99070	18		25.
Swell Test FHA Specification (60 psi)		99031	2		rce:
Unconfined Comp/Inc Moist D2166		99060)1		Sou

	•	٧	1
Sample Location:	Type of Material:	Sampled by:	

An employee owned company

6380 South Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 phone (702) 361-9094 fax

Transmittal Letter

To:	Chad Walker			From:	Jessi He	enderson
	Sierra Testing Laborate	ories		Date:	June 7,	2007
	5040 Robert J. Mathew	vs Suite 1		File:		
	El Dorado, CA 95762			Copies:	8	1977 - 11 - 11 - 12 - 12 - 13 - 13 - 13 - 13
Subje	ect: BRC Aquifer Test	ing: Flexible and Rigid W	all Testing			
We a	re sending: X	Attached	Und	der Separate C	Cover	
Via:	Messenge	First Class	Mail	X United I	Parcel	Air Freight
Trans	: - :	r Signatures	_ For Appro	oval w & Comment	19	Your Use
		ble wall (ASTM D5084) and erence 83173-4: BRC Aqui				following samples. For
		Sample Location	Sample Date	Laboratory Number	Shipped Date	
		AA-08-OWB@35-36.5	06/05/07	29413	06/7/07	

If you have any questions please don't hesitate to call.

PARTICLE-SIZE ANALYSIS of SOILS

ASTM D 422-02

Boring #AA-09-OW@66-67'; S-29413 @ 30.0 - 35.0'

June 7, 2007 Specific Gravity = 2.73

Silty Gravel with Sand (GM)

Gravel = 46%; Sand = 22%; Silt = 30%; Clay = 2%

LL = ; PL = ; PI =

Sieve size	% Retained	% Passing
3" (75.0-mm)	0	100
2" (50.0-mm)	4	96
-1/2" (37.5-mm)	8	92
" (25.0-mm)	13	87
/2" (12.5-mm)	28	72
3/8" (9.5-mm)	34	66
[‡] 4 (4.75-mm)	46	54
‡10 (2.00-mm)	46	54
‡16 (1.18-mm)	51	49
[‡] 40 (425-μm)	58	42
‡50 (300-μm)	61	39
[‡] 100 (150-μm)	65	35
² 200 (75-μm)	68	32
Hydrometer Analysis		
3-μ m		6
!0-μm		5
.3-μ m		4
)-μm		4
j-μm		3
i.2-μm		2
Colloids (<1-µm)		I
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
	4 10 16 40 50 100 200	
	• • • • • • • • • • • • • • • • • • •	• • • • • •
90		

MOISTURE CONTENT OF SOIL, ROCK AND SOIL-AGGREGATE MIXTURES ASTM D-2216

Job # =>	83173	Lab Number =>	29413
Project =>	BRC AQUIFER TESTING	Date Sampled =>	NR
Client =>	BRC	Date Received =>	
Phase =>	4	Sampled By =>	NR
Sample Location =>	AA-08-OWB @ 30-32.5	Tested By =>	JLW
		Reviewed By =>	JH

Pan Label =>	DUDE	
Tare Weight of Pan =>	387	A
Wet Wt. of Sample & Tare =>	2495.4	В
Dry Wt. of Sample & Tare =>	2304.64	С
Weight of Moisture (B-C) =>	190.8	D
Dry Wt. of Sample (C-A) =>	1917.64	E
Percent Moisture (D/E)*100 =>	9.9	F

Sieve Retaining More Than About Recommended Minimum Mass

10% of Sample	of Moist Sample
No. 10	100 to 200 gms
No. 4	300 to 500 gms
3/4 ^H	500 to 1000 gms
11/2"	1500 to 3000 gms
3"	5000 to 10000 gms

Dry @ 110 \pm 5° C to a constant mass If sample contains Gypsum or other materials having hydrated water Then dry @ 60 ± 5 °C

PROJECT NAME: BRC Aquifer Testing

PROJECT NUMBER:

83173

LAB NUMBER:

29413 AA-08-OWB

BORING: DEPTH:

30 - 32.5'

DATE:

06/15/07

TECHNICIAN:

JLW

ASTM D-854 SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER

Pycnometer Label	1
Mass of Pycometer,Mf =>	220.94
Mass of Pycometer & Water,Ma =>	719.4
Temperature of Water when	
Ma above was Taken, Ta =>	20.4
Mass of Speciman & Pycnometer =>	321.75
Mass of Pycnometer, Mf =>	220.94
Mass of Oven-Dry Specimen, Mo =>	100.81
Mass of Pycnometer, Soil & Water, Mb =>	783.25
Temperature of Water when	
Mb Above was Taken, Tb =>	19.4

Prodedure

Record the mass of a clean dry pycnometer,Mf
Record the mass of the pyc. and distilled water at calibration mark,Ma
Record the temperature of the water to the nearest .5° C,Ta
Record Mass of Pyc & Water at Calibration Mark,Ma

Water Density at Ta	0.99812
Water Density at Tb	0.99833
K Factor at Tb	1.00012

Ma at Tb	221.0446766
Sp Gr at Tb	2.72754329
Sp Gr at 20 C	2.727870595

SPECIFIC GRAVITY AT 20 C	2.727870595
SPECIFIC GRAVITY AT 20 C	2.727870595

Atlas Consultants, Inc.

6000 S. Eastern Avenue, Suite 10J • Las Vegas, Nevada 89119 (702) 383-1199 • Fax (702) 383-4983

member of AMERICAN SOCIETY FOR **TESTING MATERIALS**

LABORATORY NO:

14462(l)

DATE: June 20, 2007

SAMPLE:

Soil

P.O.:

MARKED:

83173-4

LAB ID: 29413

SUBMITTED BY:

Kleinfelder, Inc.

ANALYZED BY:

Kurt D. Ergun

REPORT OF DETERMINATION **ASTM 2974**

SAMPLE NO.

LOCATION

DEPTH (feet)

ORGANIC CARBON

29413

AA-08-OWB

30-32.5

1.40%

	SPECIFIC GRAVITY OF COARSE AND FINE AGGREGATE ASTM 127 & 128				
Job # =>	83173		Lab Number =>	29413	
Project =>	BRC Aquifer Testing		Date Sampled =>		
Client =>	BRC		Date Received =>		
Phase =>	4		Sampled By =>		
Sample Location =>	AA-08-OWB @ 30 - 32.5'		Tested By =>	JLW	
[Reviewed By =>		

	COARSE AGGREGA	ATE
Dry Wt. of Sample A=>	6413.6	
SSD Wt. of Sample B=>	6636.3	
Wt. SSD Under Water C=>	3989.3	Averages
Bulk Sp Gr. A/(B-C) ≂>	2.423	2.423
Bulk SSD B/(B-C) =>	2.507	2.507
Apparent Sp Gr A/(A-C) =>	2.646	2.646
Absorption ((B-A)/A)*100 =>	3.5	3.5

June 18, 2007

Kleinfelder, Inc.

Attn: Jessi Henderson 4875 Longley Ln Ste 100 Reno NV 89502-5953

STL Project No: 07-220

Subject:

BRC Aquifer

Project No:

83173.4

Invoice No:

4535

LABORATORY TEST RESULTS

Dear Mr. Henderson:

As requested, Sierra Testing Laboratories, Inc. performed laboratory testing on **four samples** of material from the subject site. The samples were identified as:

- 1. B-4, 35-36.5
- 2. B-2, 60-61.5
- 3. B-2, 90-91.5

Our laboratory received the samples on **June 5**, **2007**. The test performed on the submitted samples was as follows:

1) Flexible Wall Permeability (ASTM D5084)

The results of the above referenced testing are presented on the attached figure(s).

We appreciate the opportunity to be of service to you on this project and look forward to providing additional service, as needed, in the future.

Should you have any questions or require additional information, please contact our office at your convenience.

Very truly yours,

Chad M. Walker Project Manager

Enclosures

sm

SAMPLE DATA

Sample Identification: B-2

Sample Depth, ft.: 60-61.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 22.9 psi

TEST RESULTS

Permeability, cm/sec.: 4.40E-08

Average Hydraulic Gradient: 14.2

Effective Cell Pressure, psi: 22.9

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 93.3 Moisture Content, % 29.5 Specific Gravity, Assumed

Percent Saturation:

After Test

Specimen Height, cm: 4.57 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 108.1 Moisture Content, % 20.2

Test Method: ASTM D5856

PROJECT NUMBER:

June 5, 2007

07-220

BRC Aquifer Testing

SIERRA TESTING LABORATORIES, INC.

SAMPLE DATA

Sample Identification: B-2

Sample Depth, ft.: 90-91.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 34.4 psi

TEST RESULTS

Permeability, cm/sec.: 1.58E-07

Average Hydraulic Gradient: 9.9

Effective Cell Pressure, psi: 34.4

TEST SAMPLE DATA

Before Test

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 80.2 Moisture Content, % 40.3 Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 81.0

Moisture Content, % 42.5

Specific Gravity, Assumed Percent Saturation:

Test Method: ASTM D5856

PROJECT NUMBER: 07-220

June 5, 2007

BRC Aquifer Testing

SIERRA TESTING LABORATORIES, INC.

SAMPLE DATA

Sample Identification: B-4

Visual Description: N/A

Remarks:

Sample Depth, ft.: 35-36.5

Sample Type: Sample Liner

TEST RESULTS

Permeability, cm/sec.: 6.64E-04

Average Hydraulic Gradient: 8.1

Effective Cell Pressure, psi: 13.4

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 103.2 Moisture Content, % 25.7 Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 104.3 Moisture Content, % 23.2

Test Method: ASTM D5856

PROJECT NUMBER:

07-220 June 5, 2007

BRC Aquifer Testing

SIERRA TESTING LABORATORIES, INC.

Invoice

Invoice Date	Invoice #:		
6/18/2007	4533		

Bill To:	
----------	--

Kleinfelder, Inc. 4875 Longley Lane, Suite 100 Reno, NV 89502-5953 Attn: Accounts Payable

Customer Job:		

BRC Aquifer Testing

STL Job #: Customer Job#: 07-220 83173.4

					Contract the contract of the c
Samples Tested	Test Method	Description	Qty	Rate	Amount
B-3, 75-75.6	ASTM D5084 -3"	Flexible Wall Permeability 1.4"-3.0" sample diameter		210.00	210.00
B-3, 55-56.5	ASTM D5084 -3"	Flexible Wall Permeability 1.4"-3.0" sample diameter		210.00	210.00
B-1, 65-66.5	ASTM D5084 -3"	Flexible Wall Permeability 1.4"-3.0" sample diameter		210.00	210.00
B-1, 95-96.5	ASTM D5084 -3"	Flexible Wall Permeability 1.4"-3.0" sample diameter		210.00	210.00
		Tota			\$840.00

Conditions:

The invoice is due on presentation and is past due 30 days from the invoice date. A finance charge of 1.5% per month or the maximum rate allowed by law will be charged on all past due accounts.

June 18, 2007

Kleinfelder, Inc. Attn: Jessi Henderson 4875 Longley Ln Ste 100 Reno NV 89502-5953

STL Project No: 07-220

Subject:

BRC Aquifer

Project No:

83173.4

Invoice No:

4533

LABORATORY TEST RESULTS

Dear Mr. Henderson:

As requested, Sierra Testing Laboratories, Inc. performed laboratory testing on **four samples** of material from the subject site. The samples were identified as:

- 1. B-3, 75-75.6
- 2. B-3, 55-56.5
- 3. B-1, 65-66.5
- 4. B-1, 95-96.5

Our laboratory received the samples on **June 4, 2007**. The test performed on the submitted samples was as follows:

1) Flexible Wall Permeability (ASTM D5084)

The results of the above referenced testing are presented on the attached figure(s).

We appreciate the opportunity to be of service to you on this project and look forward to providing additional service, as needed, in the future.

Should you have any questions or require additional information, please contact our office at your convenience.

Very truly yours.

Chad M. Walker Project Manager

Enclosures

sm

SAMPLE DATA

Sample Identification: B-1

Visual Description: N/A

Remarks:

Sample Depth, ft.: 65-66.5

Sample Type: Sample Liner

TEST RESULTS

Permeability, cm/sec.: 1.74E-03

Average Hydraulic Gradient: 3.9

Effective Cell Pressure, psi: 25

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.88 Dry Unit Weight, pcf: 110.0 Moisture Content, % 15.8

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.88 Dry Unit Weight, pcf: 112.3 Moisture Content, % 16.7

Test Method: ASTM D5856

PROJECT NUMBER:

07-220 June 4, 2007

BRC Aquifer Testing

SAMPLE DATA

Sample Identification: B-1

Visual Description: N/A

Remarks:

Sample Depth, ft.: 65-66.5

Sample Type: Sample Liner

TEST RESULTS

Permeability, cm/sec.: 1.74E-03

Average Hydraulic Gradient: 3.9

Effective Cell Pressure, psi: 25

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08
Specimen Diameter, cm: 4.88
Dry Unit Weight, pcf: 110.0
Moisture Content, % 15.8
Specific Gravity, Assumed
Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.88 Dry Unit Weight, pcf: 112.3 Moisture Content, % 16.7

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 4, 2007

BRC Aquifer Testing

SAMPLE DATA

Sample Identification: B-1

Sample Depth, ft.: 95-96.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 36 psi

TEST RESULTS

Permeability, cm/sec.: 1.04E-07

Average Hydraulic Gradient: 10.7

Effective Cell Pressure, psi: 36

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 64.4 Moisture Content, % 59.0 After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 65.1 Moisture Content, % 58.9

Specific Gravity, Assumed Percent Saturation:

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 4, 2007

BRC Aquifer Testing

SAMPLE DATA

Sample Identification: B-3

Sample Depth, ft.: 55-56.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks:

TEST RESULTS

Permeability, cm/sec.: 1.75E-04

Average Hydraulic Gradient: 10.4

Effective Cell Pressure, psi: 21

TEST SAMPLE DATA

Before Test

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 112.7 Moisture Content, % 17.0 Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 113.9

Specific Gravity, Assumed

Moisture Content, % 18.5

Percent Saturation:

Test Method: ASTM D5856

07-220

June 4, 2007

BRC Aquifer Testing

SIERRA TESTING LABORATORIES, INC.

PROJECT NUMBER:

SAMPLE DATA

Sample Identification: B-3

Sample Depth, ft.: 75-75.6

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 29 psi

TEST RESULTS

Permeability, cm/sec.: 2.72E-08

Average Hydraulic Gradient: 9.1

Effective Cell Pressure, psi: 29

TEST SAMPLE DATA

Before Test

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 81.9 Moisture Content, % 38.3

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 81.9 Moisture Content, % 38.8

Specific Gravity, Assumed

Percent Saturation:

Test Method: ASTM D5856

PROJECT NUMBER: 07-220

June 4, 2007

BRC Aquifer Testing

June 25, 2007

Kleinfelder, Inc. Attn: G. Whittman 4875 Longley Ln Ste 100 Reno NV 89502-5953

STL Project No: 07-220

Subject:

BRC Aquifer

Project No:

83173.4

Invoice No:

4546

LABORATORY TEST RESULTS

Dear Mr. Whittman:

As requested, Sierra Testing Laboratories, Inc. performed laboratory testing on **seven samples** of material from the subject site. The samples were identified as:

- 1. AA-20-OW, 6/2/07, 30-31.5
- 2. AA-20-OW, 6/2/07, 50-51.5
- 3. AA-06, 6/3/07, 55-56.5
- 4. AA-06, 6/3/07, 60-61.5
- 5. B-4, 6/1/07, 80-81.5
- 6. AA-09-OW, 6/1/07, 55-56.5
- 7. AA-09-OW, 6/1/07, 70-71.5

Our laboratory received the samples on **June 7, 2007**. The test performed on the submitted samples was as follows:

1) Flexible Wall Permeability (ASTM D5084)

The results of the above referenced testing are presented on the attached figure(s).

We appreciate the opportunity to be of service to you on this project and look forward to providing additional service, as needed, in the future.

Should you have any questions or require additional information, please contact our office at your convenience.

very truly yours,

Project Manager

Enclosures

sm

SAMPLE DATA

Sample Identification: AA-20-OW

Sample Depth, ft.: 30-31.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 11.5 psi

TEST RESULTS

Permeability, cm/sec.: 1.35E-07

Average Hydraulic Gradient: 6.1

Effective Cell Pressure, psi: 11.5

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 79.6 Moisture Content, % 39.6

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 77.2 Moisture Content, % 40.8

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 7, 2007

BRC Aquifer Testing

SAMPLE DATA

Sample Identification: AA-20-OW

Sample Depth, ft.: 50-51.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 19.0 psi

TEST RESULTS

Permeability, cm/sec.: 6.38E-08

Average Hydraulic Gradient: 9.9

Effective Cell Pressure, psi: 19

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 93.7 Moisture Content, % 28.0

Specimen Height, cm: 5.05 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 95.1 Moisture Content, % 28.3

After Test

Specific Gravity, Assumed Percent Saturation:

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 7, 2007

SIERRA TESTING LABORATORIES, INC

BRC Aquifer Testing

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

Phone: (916) 939-3460 FAX: (916) 939-3507

SAMPLE DATA

Sample Identification: AA-06

Sample Depth, ft.: 55-56.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 21.0 psi

TEST RESULTS

Permeability, cm/sec.: 1.64E-07

Average Hydraulic Gradient: 8.0

Effective Cell Pressure, psi: 21

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.97 Specimen Diameter, cm: 5.08 Dry Unit Weight, pcf: 81.9 Moisture Content, % 40.9

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.97 Specimen Diameter, cm: 5.08 Dry Unit Weight, pcf: 83.5 Moisture Content, % 36.2

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 7, 2007

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

Phone: (916) 939-3460 FAX: (916) 939-3507

BRC Aquifer Testing

SAMPLE DATA

Sample Identification: AA-06

Sample Depth, ft.: 60-61.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 23.0 psi

TEST RESULTS

Permeability, cm/sec.: 1.64E-08

Average Hydraulic Gradient: 8.7

Effective Cell Pressure, psi: 23

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 90.0 Moisture Content, % 29.9

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.05 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 90.5 Moisture Content, % 28.2

Test Method: ASTM D5856

PROJECT NUMBER: 07-220

June 7, 2007

SIERRA TESTING LABORATORIES, INC.

BRC Aquifer Testing

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

Phone: (916) 939-3460 FAX: (916) 939-3507

SAMPLE DATA

Sample Identification: B-4

Sample Depth, ft.: 80-81.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 30.5 psi

TEST RESULTS

Permeability, cm/sec.: 1.15E-07

Average Hydraulic Gradient: 8.3

Effective Cell Pressure, psi: 30.5

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85

Dry Unit Weight, pcf: 82.9 Moisture Content, % 34.8

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.03 Specimen Diameter, cm: 4.85

Dry Unit Weight, pcf: 80.4

Moisture Content, % 34.5

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 7, 2007

BRC Aquifer Testing

SAMPLE DATA

Sample Identification: AA-09-OW

Sample Depth, ft.: 55-56.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 21.0 psi

TEST RESULTS

Permeability, cm/sec.: 2.80E-08

Average Hydraulic Gradient: 9.3

Effective Cell Pressure, psi: 21

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 84.1 Moisture Content, % 35.1

Specific Gravity, Assumed

Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 84.1

Moisture Content, % 36.5

Test Method: ASTM D5856

PROJECT NUMBER:

07-220 June 7, 2007

BRC Aquifer Testing

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

Phone: (916) 939-3460 FAX: (916) 939-3507

HYDRAULIC CONDUCTIVITY TEST REPORT

SAMPLE DATA

Sample Identification: AA-09-OW

Sample Depth, ft.: 70-71.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 27 psi

TEST RESULTS

Permeability, cm/sec.: 3.96E-07

Average Hydraulic Gradient: 5.7

Effective Cell Pressure, psi: 27

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08
Specimen Diameter, cm: 4.85
Dry Unit Weight, pcf: 63.2
Moisture Content, % 59.3
pecific Gravity, Assumed

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 62.6 Moisture Content, % 60.1

Specific Gravity, Assumed Percent Saturation:

Test Method: ASTM D5856

PROJECT NUMBER:

07-220

June 7, 2007

BRC Aquifer Testing

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

Phone: (916) 939-3460 FAX: (916) 939-3507

June 20, 2007

Kleinfelder, Inc.

Attn: Jessi Henderson 4875 Longley Ln Ste 100 Reno NV 89502-5953

STL Project No: 07-220

Subject:

BRC Aquifer

Project No:

83173.4

Invoice No:

4541

LABORATORY TEST RESULTS

Dear Mr. Henderson:

As requested, Sierra Testing Laboratories, Inc. performed laboratory testing on **one sample** of material from the subject site. The sample was identified as:

AA-08-OWB, 6/5/07

Our laboratory received the samples on **June 11, 2007**. The test performed on the submitted samples was as follows:

1) Flexible Wall Permeability (ASTM D5084)

The results of the above referenced testing are presented on the attached figure(s).

We appreciate the opportunity to be of service to you on this project and look forward to providing additional service, as needed, in the future.

Should you have any questions or require additional information, please contact our office at your convenience.

Very truly yours

Chad M. Wálker Project Manager

Enclosures

sm

HYDRAULIC CONDUCTIVITY TEST REPORT

SAMPLE DATA

Sample Identification: AA-08-OWB

Sample Depth, ft.: 35-36.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 13.4 psi

TEST RESULTS

Permeability, cm/sec.: 1.02E-03

Average Hydraulic Gradient: 10.7

Effective Cell Pressure, psi: 13.4

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 119.1 Moisture Content, % 9.7

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 119.1 Moisture Content, % 14.9

PROJECT NUMBER: 07-220 June 11, 2007

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

BRC Aquifer Testing

June 18, 2007

Kleinfelder, Inc.

Attn: Jessi Henderson 4875 Longley Ln Ste 100 Reno NV 89502-5953

STL Project No: 07-220

Subject:

BRC Aquifer

Project No:

83173.4

Invoice No:

4536

LABORATORY TEST RESULTS

Dear Mr. Henderson:

As requested, Sierra Testing Laboratories, Inc. performed laboratory testing on **two samples** of material from the subject site. The samples were identified as:

AA-08-OW, 6/4/07: 15-16.5
 AA-08-OW, 6/4/07: 40-41.5

Our laboratory received the samples on **June 7, 2007**. The test performed on the submitted samples was as follows:

1) Flexible Wall Permeability (ASTM D5084)

The results of the above referenced testing are presented on the attached figure(s).

We appreciate the opportunity to be of service to you on this project and look forward to providing additional service, as needed, in the future.

Should you have any questions or require additional information, please contact our office at your convenience.

Very truly yours.

Chad M. Walker Project Manager

Enclosures

sm

HYDRAULIC CONDUCTIVITY TEST REPORT

SAMPLE DATA

Sample Identification: AA-08-OW

Sample Depth, ft.: 15-16.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 6.0 psi

TEST RESULTS

Permeability, cm/sec.: 2.41E-03

Average Hydraulic Gradient: 2.2

Effective Cell Pressure, psi: 6

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08

Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 114.3

Moisture Content, % 14.5

Specific Gravity, Assumed

Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85

Dry Unit Weight, pcf: 114.3

Moisture Content, % 14.7

Test Method: ASTM D5856 June 7, 2007

07-220

BRC Aquifer Testing

SIERRA TESTING LABORATORIES, INC.

PROJECT NUMBER:

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

HYDRAULIC CONDUCTIVITY TEST REPORT

SAMPLE DATA

Sample Identification: AA-08-OW

Sample Depth, ft.: 40-41.5

Visual Description: N/A

Sample Type: Sample Liner

Remarks: Confining Stress = 15.0 psi

TEST RESULTS

Permeability, cm/sec.: 1.33E-03

Average Hydraulic Gradient: 4.3

Effective Cell Pressure, psi: 15

TEST SAMPLE DATA

Before Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 116.1 Moisture Content, % 15.5

Specific Gravity, Assumed Percent Saturation:

After Test

Specimen Height, cm: 5.08 Specimen Diameter, cm: 4.85 Dry Unit Weight, pcf: 116.1 Moisture Content, % 16.5

Test Method: ASTM D5856

PROJECT NUMBER:

07-220 June 7, 2007

BRC Aquifer Testing

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

APPENDIX C

SLUG TEST DATA PLOTS AND PERTINENT PRE-EXISTING BORING LOGS

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada	Test Well: AA-20		
Test conducted by: G.P. Wittman		Test date: 8/24/2007	
Analysis performed by: G.P. Wittman	AA-20 Slug In-1	Date: 8/24/2007	

Aquifer Thickness: 13.50 ft

Calculation after Bouv	wer && Rice	
------------------------	-------------	--

Observation well	К	
	[ft/d]	
AA-20	2.90 × 10 ¹	

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada Slug Test: AA-20 Slug Out-1 Test Well: AA-20
Test conducted by: G.P. Wittman Test date: 8/24/2007
Analysis performed by: G.P. Wittman AA-20 Slug Out-1 Date: 8/24/2007

Aquifer Thickness: 13.50 ft

Calculation after Bouwer	Calculation after Bouwer && Rice					
Observation well	K [fl/d]					
AA-20	3.25 × 10 ¹					

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada Slug Test: AA=20 Slug Out-2 Test Well: AA-20
Test conducted by: G.P. Wittman Test date: 8/24/2007

Analysis performed by: G.P. Wittman AA-20 Slug Out-2 Date: 8/24/2007

Aquifer Thickness: 13.50 ft

Calculation after Bouwer && Ric	
	•

Observation well	К	
	[ft/d]	
AA-20	4.40 × 10 ¹	

Log of Boring No. BRC-SB-20-A

BMI Site - Hydrogeologic Characterization

Lithology

Drilling Method: Rotary Sonic **Drilling Equipment: Rotary Sonic**

Drilling Contractor: Prosonic Corporation

Driller: Don Youngblood

Borehole Total Depth: 78.5 ft bgs Borehole Diameter: 8.5 in

Location 20 (Well ID: AA-20) Boring Location:

Monitoring Well Construction

Depth to Water (ft. bgs): 16.5 ft bgs V

Sample Type: Split-Spoon (2"ID)

Sample Interval Varies

Logged By: Adam Norris Date Started: 7/10/04 Date Completed: 7/11/04 Type of Surface Seal:

Blank Casing Type/Size: Screen Type/Size:

4" Sch 80 PVC 4" Sch 80 PVC Transition Sand Type: N/A

Bentonite-Grout

Screen Slot Size:

0.010 in Top of Screen (ft. bgs): -10 ft bgs Bottom of Screen (ft. bgs): -30 ft bgs

Type of Sand Pack:

#2 x 12

Basic Remediation

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery	(feet)	Sample Retained for Analysis	PID
---------------------------	-------------	-----------------	-----------------	--------	------------------------------	-----

Soil Description

Well Construction

Project No. 3850360 Log of Boring:

BRC-SB-20-A

Page 1 of 3

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Log of Boring No. BRC-SB-20-A

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

M IVIWH

Log of Boring: BRC-SB-20-A

Page 2 of 3

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Log of Boring No. BRC-SB-20-A

Project No. 3850360

Log of Boring: BRC-SB-20-A

Page 3 of 3

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: Slug Test 40	Test Well: MCF-16C
Test conducted by:		Test date: 8/23/2007

Analysis performed by: g.p. wITTMAN MCF-16C Slug In-1 Date: 8/23/2007

Aquifer Thickness: 10.00 ft

Calculation after Bouwer && Rice

Observation well	К	
	[ft/d]	
MCF-16C	2.40 × 10 ⁻¹	

Log of Boring No. BRC-SB-16-C

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Drilling Method: Sonic

Drilling Equipment: Rotary Sonic

Drilling Contractor: Prosonic

Driller: ProSonic

Borehole Total Depth: 77 ft bgs Borehole Diameter: 8.5 in

Location 16 (Well ID: MCF-16C) **Boring Location:**

Depth to Water (ft. bgs): NA

Monitoring Well Construction

Sample Type: N/A Sample Interval Cont.

Logged By: Jennifer Wiley Date Started: 06/04/04

Type of Surface Seal: Blank Casing Type/Size:

Screen Type/Size:

Bentonite-Grout 4" Sch 80 PVC

4" Sch 80 PVC

Screen Slot Size: Top of Screen (ft. bgs): Bottom of Screen (ft. bgs):

0.010 in 53 ft bgs 73 ft bgs 2 x 12

Basic Remediation

Date Completed: 06/05/04 Transition Sand Type:

Type of Sand Pack:

Project No. 3850360

MWH

Log of Boring: BRC-SB-16-C

Page 1 of 3

BMI Site - Hydrogeologic Characterization Basic Remediation Log of Boring No. BRC-SB-16-C Henderson, Nevada Sample Recovery Sample Retained for Analysis Depth Elevation (MSLD) Sample Interval (feet) Sample Type Lithology **Well Construction** Soil Description -30 Cement Bentonite Grout For lithologic interpretation, see boring log BRC-SB-16-A 4" Blank PVC Riser Pipe -40 Bentonite seal -50 #10 x 20 Sand Pack 4" 0.010 Slot PVC screen

Project No. 3850360

Log of Boring: BRC-SB-16-C

WWH

BMI Site - Hydrogeologic Characterization Basic Remediation Log of Boring No. BRC-SB-16-C Henderson, Nevada Sample Retained for Analysis Sample Recovery (feet) Depth Elevation (MSLD) Sample Interval Sample Type Lithology **Well Construction** Soil Description -60 For lithologic interpretation, see boring log BRC-SB-16-A #10 x 20 Sand Pack -70 Threaded PVC Well Base Cap Cement Backfill

Project No. 3850360

(III) WWH

Log of Boring: BRC-SB-16-C

Page 3 of 3

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada Slug Test: MCF-03B Slug In Test Well: MCF-03B

Test conducted by: Test date: 8/23/2007

Analysis performed by: G.P. Wittman MCF-03B Slug In Date: 8/23/2007

Aquifer Thickness: 10.00 ft

Calculation after Bouwer && Rice

Observation well	К	
	[ft/d]	
MCF-03B	1.80 × 10 ⁻¹	

Log of Boring No. BRC-SB-03-B

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Drilling Method: Rotary Sonic
Drilling Equipment: Rotary Sonic

Sample Type: Cont. Core/S.S.

Drilling Contractor: Prosonic Corporation

Driller: Gerald Sealey

Borehole Total Depth: 150 ft bgs Borehole Diameter: 9.5 in /8.5 in

Boring Location: Location 3 (Well ID: MCF-03B)

Depth to Water (ft. bgs): 56 ft bgs

Monitoring Well Construction

Type of Surface Seal: Blank Casing Type/Size:

nk Casing Type/Size: 4" Sch 80 PVC een Type/Size: 4" Sch 80 PVC

Sch 80 PVC Top of Screen (ft. bgs):
Sch 80 PVC Bottom of Screen (ft. bgs):

0.010" slot 57 ft bgs 77 ft bgs

Basic Remediation

Date Started: 6/5/04 Date Completed: 6/5/04

Sample Interval Various

Logged By: Tony Mikacich

Screen Type/Size: Transition Sand Type:

NA

Type of Sand Pack:

Screen Slot Size:

2/12 Sand

Depth
Sample Type
Sample Interval
Sample Recovery
(feet)
Sample Retained
for Analysis

PID

Soil Description

Bentonite-Cement

Well Construction

Project No. 3850360

(III) MWH

Log of Boring: BRC-SB-03-B

Page 1 of 5

BMI Site - Hydrogeologic Characterization

Basic Remediation

-	To 1995 1999 1999 1999 1999 1999 1999 199							
Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

MWH

Log of Boring: BRC-SB-03-B

Page 2 of 5

BMI Site - Hydrogeologic Characterization Henderson, Nevada

Log of Boring No. BRC-SB-03-B

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction
ш						-	Soil Description	

Project No. 3850360

NWH

10. 3630300

Log of Boring: BRC-SB-03-B

Page 3 of 5

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Log of Boring No. BRC-SB-03-B

Depth ion (MSLD)	e Type	e Interval	e Recovery (feet)	e Retained Analysis		99		
Elevation	Sample	Sample	Sample	Sampl for A	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

Log of Boring: BRC-SB-03-B

Page 4 of 5

BMI Site - Hydrogeologic Characterization Basic Remediation Log of Boring No. BRC-SB-03-B Henderson, Nevada Sample Recovery (feet) Sample Retained for Analysis Depth Elevation (MSLD) Sample Interval Sample Type Lithology Well Construction Soil Description Sandy silt, strong brown (7.5YR 4/6), moist, no to weak cementation, low plasticity, very stiff, no odor. Approximately 15% fine sand, 70% silt and 15% clay. 10/10 0.1 Clayey silt, strong brown (7.5YR 4/6), moist, moderate cementation, moderate plasticity, very stiff, no odor. Approximately 80% silt, 20% clay and a trace of fine sand. 0.1 -130 0.2 Clayey silt as above except grades light brown (7.5YR 6/4). 0.2 SM: Silty sand, strong brown (7.5YR 4/5), moist, weak cementation, no odor. Approximately 85% fine sand, 15% silt and a trace of clay. Cement Backfill 0.2 ML: Sandy silt, strong brown (7.5YR 4/6), moist, weak cementation, nonplastic, very stiff, no odor. Approximately 40% fine sand, 50% silt, 10% clay. 10/10 0.2 SM: Silty sand, strong brown (7.5YR 4/6), moist, weak cementation, no odor. Approximately 60% fine sand, 40% silt and a trace of clay.

ML: Sandy silt, strong brown (7.5YR 4/6), moist, moderate cementation, medium plasticity, very stiff, no odor. Approximately 30% fine sand, 55% silt, and 15% clay.

Sandy silt, strong brown (7.5YR 4/6), moist to very moist, moderate cementation, medium plasticity, very stiff, no odor. Approximately 30% fine sand, 40% silt and 30% clay.

CL: Grades silty clay, strong brown (7.5YR 4/6), moist, moderate cementation, high plasticity, very stiff, no odor. Approximately 40% silt and 60% clay.

-150

ML: Grades sandy clayey silt, strong brown (7.5YR 4/6), moist, moderate cementation, medium plasticity, very stiff, no odor. Approximately 15% fine sand, 45% silt and 40% clay.

ML: Bottom of hole at 150' bgs.

Project No. 3850360

0.2

0.2

02

0.1

(III) MWH

-140

Log of Boring: BRC-SB-03-B

Page 5 of 5

Kleinfelder West, Inc Slug Test Analysis Report 2315 S. Cobalt Point Way Project: BMI Aquifer Test Meridian, Idaho 83642 Number: 83173 (208) 893-9700 Client: **BRC** Location: Henderson, Nevada Slug Test: Test Well: AA-13 Test date: 8/23/2007 Test conducted by: Analysis performed by: G.P. Wittman AA-13 Slug In-1 Date: 8/23/2007 Aquifer Thickness: 5.00 ft Time [s] 160 240 400 80 320 1E1o AA-13 1E0-0년 1E-1 1E-2-1E-3 Calculation after Bouwer && Rice Observation well [ft/d] 1.22×10^{1} AA-13

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: AA-13 Slug Out-1	Test Well: AA-13		
Test conducted by: L.Fleischhauer		Test date: 8/23/2007		
Analysis performed by: G.P. Wittman	AA-13 Slug Out-1	Date: 8/23/2007		

Aquifer Thickness: 5.00 ft

Observation well	К	
	[ft/d]	
AA-13	1.42 × 10 ¹	

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada Slug Test: AA-13 Slug In-2 Test Well: AA-13

Test conducted by: G.P. Wittman Test date: 8/23/2007

Analysis performed by: G.P. Wittman AA-13 Slug In-2 Date: 8/23/2007

Aquifer Thickness: 5.00 ft

Gardinario Gardinario del				
Calculation	after	Bouwer	&&	Rice

Observation well	К	
	[ft/d]	
AA-13	1.12 × 10 ¹	

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada Slug Test: Slug Test 39 Test Well: AA-13

Test conducted by: Test date: 8/23/2007

Analysis performed by: G.P. Wiltman Aa-13 Slug 2-2 Date: 8/23/2007

Aquifer Thickness: 5.00 ft

Calculation after Bouwer && Rice

Observation well	К	
	[ft/d]	
AA-13	1.25 × 10 ¹	

Log of Boring No. BRC-SB-13-A

BMI Site - Hydrogeologic Characterization

Drilling Method: Rotary Sonic **Drilling Equipment: Rotary Sonic**

Drilling Contractor: Prosonic Corporation

Driller: Gerardo Chavez

Borehole Total Depth: 98.5 ft bgs 8.5 in Borehole Diameter:

Location 13 (Well ID: AA-13) **Boring Location:**

Depth to Water (ft. bgs): NA

Sample Type: Continuous Core Sample Interval Continuous

Logged By: Jennifer Wiley Date Started: 6/10/04 Date Completed: 6/10/04

Type of Surface Seal:

Blank Casing Type/Size:

Screen Type/Size: Transition Sand Type: N/A

Monitoring Well Construction Bentonite Grout Screen Slot Size:

4" Sch 80 PVC 4" Sch 80 PVC

Top of Screen (ft. bgs): Bottom of Screen (ft. bgs): Type of Sand Pack:

0.010 in 38 ftbgs 58 ft bgs #2 x 12

Basic Remediation

Sample Recovery Retained Elevation (MSLD) Sample Interval Sample Retain for Analysis Sample Type

Lithology 吕

Soil Description

Well Construction

Project No. 3850360

MWH

Log of Boring: BRC-SB-13-A

Page 1 of 4

BMI Site - Hydrogeologic Characterization

Henderson, Nevada Log of Boring No. BRC-SB-13-A

n (N	ple Type	ple Interval	(feet) ple Reta	Analysis	юду		
Elevat	Sampl	Sampl	am	B	Litho	Soil Description	Well Construction

1	Grab	1 1	0.1	gravel, 10% coarse sand, 30% medulm sand, 45% fine sand and 10% slit.	1 1
		1.5/20		gravel, 10% coarse sand, 30% medulm sand, 45% fine sand and 10% slit. Collected BRC-SB-13-A-27 for chemical analysis. GP-GM: Poorly graded gravel with silt and sand, pale brown (10YR 6/3), loose, dry to moist, subangular to subrounded sand and volcanic gravel (to 1.5"), non cemented, no odor. Approximately 50% gravel, 10% coarse sand, 20% medulm sand, 10% fine sand and 10% silt.	
-30 —	Grab		0.3	GP-GM: Poorly graded gravel with silt and sand, pale brown (10YR 6/3), loose, dry to moist, subangular to subrounded sand and volcanic gravel (to 1.5"), non cemented, no odor. Approximately 50% gravel, 10% coarse sand, 20% meduim sand, 10% fine sand and 10% silt.	
				SW: Well graded sand, brown (10YR 4/3), loose, moist, subangular to subrounded volcanic sand and gravel (to 1"), non cemented, no odor, tr.silt. Approximately 5% gravel, 35% coarse sand, 30% meduim sand, 30% fine sand and trace silt.	Bentonite seal
-	Grab		0.1	SP: Poorly graded sand, brown (10YR 4/3), loose, moist, subangular to subrounded volcanic sand and gravel (to 1"), non cemented, no odor, tr. silt. Approximately 10% gravel, 10% coarse sand, 40% medulm sand, 40% fine sand and trace silt.	
-40 —	Grab		0.1	Poorly graded sand with gravel, brown (10YR 4/3), loose, moist, subangular to subrounded volcanic sand and gravel (to 3/4"), tr. silt, non cemented, no odor, tr. silt. Approximately 30% gravel, 10% coarse sand, 25% meduim sand, 30% fine sand and 5% silt.	4" 0.010 Slot PVC screen
2.0	Grab		0.1	GP: Poorly graded gravel with silt and sand, dark yellowish brown (10YR 4/4), loose, wet, subangular to subrounded sand and volcanic gravel (to 3/4"), tr.silt, non cemented, no odor. Approximately 60% gravel, 20% coarse sand, 5% meduim sand, 10% fine sand and 5% silt.	Pack
-50 —	Grab	0.25/8.5	0.2	Collected BRC-SB-13-A-47 for NEL SP: Poorly graded sand with gravel, yellowish (10YR 5/4), loose, wet, subangular to subrounded volcanic sand and gravel (to 1/21"), fr. silt, non cemented, no odor, fr. silt. Approximately 30% gravel, 30% coarse sand, 25% meduim sand, 10% fine sand and 5% silt. All sand at 50' bgs is reworked silt, light yellowish brown (2.5YR 6/3). Approximately 50% medium sand, 45% fine sand and 5% silt.	
	Grab	0.5/11.5	NA	ML: Very sandy silt, very moist, weak induration in areas. Approximately 15% medulm sand, 15% fine sand and 70% silt. Very sandy silt, yellowish brown (10YR 5/4), stiff, very moist, angular sand (comprised of silt chips), tr. clay, non to weak induration, no odor, non plastic. Approximately 30% medulm sand, 10% fine sand, 60% silt and trace clay. Collected BRC-SB-13-A-55.5 for NEL Very sandy silt, yellowish brown (10YR 5/4), soft, wet, angular sand (comprised of silt chips), tr. clay. Approximately 20% medulm sand, 20% fine sand, 60% silt and trace clay. SM: Non cemented, no odor, non to moderate plasticity. Approximately 30% medium sand,	Threaded DVO
				30% fine sand and 40% slit.	Threaded PVC Well Base Cap

Project No. 3850360

(III) WWH

Log of Boring: BRC-SB-13-A

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Log of Boring No. BRC-SB-13-A

		-	O.1., I	WC V &	IGG		209 01 2011119 1101	DI(0-0D-10-
Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction
_	Grab				0.1		ML: Silty sand, light gray (5Y 7/2), moist to very moist, angular sand (comprised of silt chips), weak induration, no odor. Approximately 15% medulm sand, 15% fine sand, 70% silt and trace clay. Sandy silt, light gray (5Y 7/2), angular sand (comprised of silt chips), weak induration, no odor, low plasticity, tr.clay, moist to very moist. Approximately 55% medulm sand, 15% fine sand, 60% silt and trace clay. At 60' bgs color change to pale olive (5Y 6/2), moist to very moist.	
-	Grab		1.5/10		0.1		Silt, light gray (5Y 7/2), moist to very moist, friable, weakly indurated, silt easily crumbles into smaller silt chips, non plastic. Approximately 100% silt. Collected BRC-SB-13-A-67 for chemical analysis.	
_	Grab				0.1		Silt, pale brown (10YR 6/3), moist to very moist, very stiff, angular sand (comprised of silt chips), non cemented, no odor, low plasticity. Approximately 10% meduim sand, 10% fine sand and 80% silt. Sandy silt, yellowish brown (10YR 5/4), moist, very stiff, angular sand (comprised of silt chips), tr. clay, non cemented, no odor and low plasticity. Approximately 15% meduim sand, 15% fine sand and 70% silt.	Cement Backfill
	Grab		1.5/12		0.1		Very sandy silt, yellowish brown (10YR 5/4), moist to very moist, stiff, angular sand (comprised of silt chips), tr. clay, non cemented, no odor and non plastic. Approximately 30% meduim sand, 15% fine sand and 55% silt and trace clay. Collected BRC-SB-13-A-77 for chemical analysis. Color change to light gray (5Y 7/2), soft, moist to very moist in spots, non cemented, no odor, low plasticity ant tr. clay. Approximately 20% meduim sand, 15% fine sand and 65% silt and	
-	Grab				0.1		Color change to yellowish brown (10YR 5/4), moist. Approximately 10% medulm sand, 10% fine sand and 80% silt and trace clay.	
-	Grab				0.1		Silt with sand, yellowsh brown (10YR 5/4), very stiff, moist, angular sand (silt chips), non cemented to weak induration in areas, no odor, non to weak plasticity, tr. clay. Approximately 10% medulm sand, 10% fine sand and 80% silt and trace clay.	
-	Grab		0.5/8		0.1		SM: Silty sand, yellowish brown (10YR 5/4), wet, non cemented, no odor. Approximately 70% fine sand and 30% silt. Color change to light gray (5Y 7/2), increased silt, wet. Approximately 65% fine sand and 45% silt.	

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-13-A

Page 3 of 4

BMI Site - Hydrogeologic Characterization Basic Remediation Log of Boring No. BRC-SB-13-A Henderson, Nevada Sample Retained for Analysis Sample Recovery (feet) Depth Elevation (MSLD) Sample Interval Sample Type Lithology **Well Construction** Soil Description ML: Sandy silt, yellowish brown (10YR 5/4), stiff, moist to very moist, angular sand (silt chips), non cemented, no odor, non plastic. Approximately 20% medulm sand, 20% fine sand and 60%. Sandy silt, yellowish brown (10YR 5/4), stiff, moist to very moist, angular sand (silt chips), non cemented, no odor, non plastic. Approximately 20% medulm sand, 20% fine sand and 60%. Grab 0.1 Cement Backfill 1.5/1.5 Collected BRC-SB-13-A-97 for chemical analysis.

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-13-A

Page 4 of 4

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada Slug Test: AA-07-IN-1 Test Well: AA-07

Test conducted by: Test date: 6/21/2007

Analysis performed by: G.P. Wittman AA-07 Slug In-1 Date: 8/23/2007

Aquifer Thickness: 9.00 ft

Calculation	after	Rouwer	22	Rice
Calculation	aitei	DUUWEI	CCC	LICE

Observation well	К		
	[ft/d]		
AA-07	8.00 × 10 ⁰		

Kleinfelder West, Inc Slug Test Analysis Report 2315 S. Cobalt Point Way Project: BMI Aquifer Test Meridian, Idaho 83642 (208) 893-9700 Number: 83173 Client: BRC Location: Henderson, Nevada Slug Test: AA-07-out-1 Test Well: AA-22 Test conducted by: Test date: 6/22/2007 Analysis performed by: G.P. Wittman AA-. 7'-Slug Out-1 Date: 7/2/2007 Aquifer Thickness: 9.50 ft Time [s] 200 400 600 800 1000 1E1 *** AA-**22 1E0-1E-2 1E-3-Calculation after Bouwer && Rice Observation well [ft/d] AA-22 6.50×10^{0}

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada Slug Test: AA-07-in-2 Test Well: AA-07

Test conducted by: Test date: 6/22/2007

Analysis performed by: G.P. Wittman AA-07 Slug In-2 Date: 7/2/2007

Aquifer Thickness: 9.50 ft

Calculation aft	er Bouwer && Rice
-----------------	-------------------

Observation well	К	
	[ft/d]	
AA-07	5.00 × 10 ⁰	

Slug Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada Slug Test: AA-07-out-2 Test Well: AA-07
Test conducted by: Test date: 6/22/2007

Analysis performed by: G.P. Wittman AA-07 Slug Out 2 Date: 7/2/2007

Aquifer Thickness: 9.60 ft

AA-07

Calculation after Bouwer	r && Rice		
Observation well	К		
	[ft/d]		

 8.00×10^{0}

Log of Boring No. BRC-SB-07-B

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Drilling Method: Rotary Sonic **Drilling Equipment: Roto Sonic**

Drilling Contractor: Prosonic Corporation

Driller: Gerald Sealey

Sample Type: Grab Sample Interval Various

Logged By: Adam Norris

Date Started: 4/21/04 Date Completed: 4/23/04 Borehole Total Depth: 255 ft bgs

Borehole Diameter:

4.5 in to 0-65 ft bgs, 8.5 in to 65-255 ft bgs

Location 7 (Well ID: MCF-07) **Boring Location:**

Depth to Water (ft. bgs):

45 ft bgs

Monitoring Well Construction

Bentonite-Cement Type of Surface Seal: Blank Casing Type/Size: 4" Sch 80 PVC

4" Sch 80 PVC Screen Type/Size:

Transition Sand Type:

Screen Slot Size:

Top of Screen (ft. bgs):

30 ft bgs 50 ft bgs

0.010 in

Basic Remediation

Type of Sand Pack:

Bottom of Screen (ft. bgs): #2 x 12

Sample Recovery Sample Retained Depth Elevation (MSLD) Sample Interval for Analysis Sample Type (feet) Lithology 吕 **Well Construction** Soil Description

Project No. 3850360

MWH

Log of Boring: BRC-SB-07-B

Page 1 of 8

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

MWH

Log of Boring: BRC-SB-07-B

Page 2 of 8

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

(III) WH

Log of Boring: BRC-SB-07-B

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

2 2	e Inte	e Recovery (feet)	le Retained Analysis		AS		
Elevation	5 5	Sample	Samp for /	PID	Litholo	Soil Description	Well Construction

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-07-B

Page 4 of 8

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-07-B

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

+									
** ** ** ** ** ** ** ** ** ** ** ** **	Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

Log of Boring:

BRC-SB-07-B

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

Depth vation (MS	Sample Type	ample Recov	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

(I) MWH

Log of Boring: BRC-SB-07-B

Page 7 of 8

Henderson, Nevada

Log of Boring No. BRC-SB-07-B

_								
Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

(I) IVIWH

Log of Boring: BRC-SB-07-B

Page 8 of 8

Slug Test Analysis Report

Project: AA-22

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: AA-22-in-1	Test Well: AA-22	
Test conducted by:	,	Test date: 7/2/2007	
Analysis performed by: G. P. Wittman	AA-22 Slug In 1	Date: 7/2/2007	

Calculation	after	Bouwer	&&	Rice	

Observation well	К					
	[ft/d]					
AA-22	6.00 × 10 ⁻¹					

Slug Test Analysis Report

Project: AA-22

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: AA-22-out-1	Test Well: AA-22	
Test conducted by:		Test date: 7/2/2007	
Analysis performed by: G.P. Wittman	AA-22 Slug Out 1	Date: 7/2/2007	

Calculation after Bouwer && Rice				
Observation well	K [ft/d]			
AA-22	3.25 × 10 ⁻¹			

Slug Test Analysis Report

Project: AA-22

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: Slug Test AA-22	Test Well: AA-22	
Test conducted by:	Test date: 7/2/2007		
Analysis performed by: G.P. Wittman	AA-22 Slug In 2	Date: 7/2/2007	

Calculation after Bouwer	&& Rice	
Observation well	K [fl/d]	
AA-22	5.48 × 10 ⁻¹	

Slug Test Analysis Report

Project: AA-22

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: AA-22-out-2	Test Well: AA-22	
Test conducted by:		Test date: 7/2/2007	
Analysis performed by: G.P. Wittman	AA-22 Slug Out 2	Date: 7/2/2007	

Calculation	after	Bouwer	88	Rice	

Modernia apply Russian Court Programmers		
Observation well	K	
	[ft/d]	
AA-22	6.44 × 10 ⁻¹	

Log of Boring No. BRC-SB-22-A

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Drilling Method: Hollow Stem Auger

Drilling Equipment: CME-95/Hollow Stem Auger

Drilling Contractor: Water Development Corporation

Driller: George Guzman

Borehole Total Depth: 40 ft bgs

Borehole Diameter: 11 in Location 22 (Well ID: AA-22)

Boring Location: Depth to Water (ft. bgs):

Monitoring Well Construction

12 ft bgs

V

Sample Type: Grab/Split spoon

Sample Interval Varied

Logged By: Jennifer Wiley Date Started: 4/1/04

Date Completed: 4/1/04

Type of Surface Seal:

Blank Casing Type/Size:

Screen Type/Size: Transition Sand Type: Cement-Grout

4" Sch 80 PVC 4" Sch 80 PVC

Screen Slot Size:

0.020 in Top of Screen (ft. bgs): Bottom of Screen (ft. bgs):

9 ft bgs 31 ft bgs

Basic Remediation

Type of Sand Pack:

#3

Depth Elevation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction
---------------------------	-------------	-----------------	---------------------------	------------------------------	-----	-----------	------------------	-------------------

Project No. 3850360

MWH

Log of Boring: BRC-SB-22-A

Page 1 of 2

Henderson, Nevada

Log of Boring No. BRC-SB-22-A

-								
Depth	ample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	Lithology	Soil Description	Well Construction

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-22-A

Page 2 of 2

Slug Test Analysis Report

Project:

Number: 83173

Client: BRC

Location: Henderson, Nevada Slug Test: AA-09 Slug Out-1 Test Well: AA-09

Test conducted by: G.P. Wittman AA-09 Slug Out-1 Date: 8/24/2007

Date: 8/24/2007

Calculation	after	Bouwer	22	Rice

Observation well	K	
	[ft/d]	
AA-09	6.73 × 10 ¹	

Slug Test Analysis Repo	rt
Project:	

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: Slug Test 34	Test Well: AA-09		
Test conducted by:		Test date: 8/24/2007		
Analysis performed by: G.P Witlman	AA-09 Slug Out-2	Date: 8/24/2007		

Calculation	after	Bouwer	88	Rice
-------------	-------	--------	----	------

Observation well	К	
	[ft/d]	
AA-09	6.20 × 10 ¹	

Slug Test Analysis Report

Project: AA-22

Number: 83173

Client: BRC

Location: Henderson, Nevada Slug Test: AA-09_3		Test Well: AA-09
Test conducted by:		Test date: 5/31/2007
Analysis performed by: G.P. Wittman	AA-09 Slug Out-3	Date: 7/2/2007

Aquifer Thickness: 20.00 ft

Calculation after Bouwer && Rice

Observation well	К	
	[ft/d]	
AA-09	5.84 × 10 ¹	

Slug Test	Analy	ysis	Report
-----------	-------	------	--------

Project:

Number: 83173

Client: BRC

Location: Henderson, Nevada	Slug Test: Slug Test 36	Test Well: AA-06
Test conducted by:		Test date: 8/24/2007
Analysis performed by: G.P. Wittman	AA-06 Slug In	Date: 8/24/2007

Aquifer Thickness: 10.00 ft

Calculation after Bouwer && Rice

CONTRACTOR OF PROPERTY OF THE		
Observation well	К	
	[ft/d]	
AA-06	1.50 × 10°	

Log of Boring No. BRC-SB-09-C **BMI Site - Hydrogeologic Characterization**

Henderson, Nevada

Drilling Method: Sonic **Drilling Equipment: Rotary Sonic**

Drilling Contractor: ProSonic

Driller: ProSonic Sample Type: N/A Borehole Total Depth: 67 ft bgs 8.5 in **Borehole Diameter:**

Location 9 (Well ID: MCF-09B) **Boring Location:**

Depth to Water (ft. bgs): NA

Monitoring Well Construction

Type of Surface Seal:

Bentonite-Grout 4" Sch 80 PVC

Screen Slot Size: Top of Screen (ft. bgs): 0.010 in 105 ft bgs

Logged By: Jennifer Wiley Date Started: 06/09/04

Sample Interval Cont.

Blank Casing Type/Size: Screen Type/Size:

Transition Sand Type:

4" Sch 80 PVC

Bottom of Screen (ft. bgs): Type of Sand Pack:

125 ft bgs #2 x 12

Date Completed: 06/09/04

Sample Interval

Sample Type

Depth Elevation (MSLD)

Sample Recovery

Sample Retained for Analysis (feet) 임

Lithology

Soil Description

Well Construction

Project No. 3850360

MWH

Log of Boring: BRC-SB-09-C

Page 1 of 3

BMI Site - Hydrogeologic Characterization Henderson, Nevada Log of Boring No. BRC-SB-09-C Sample Lydrogeologic Characterization Log of Boring No. BRC-SB-09-C Sample Lydrogeologic Characterization Log of Boring No. BRC-SB-09-C Well Construction Basic Remediation Well Construction Basic Remediation Well Construction

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-09-C

Page 2 of 3

BMI Site - Hydrogeologic Characterization Basic Remediation Log of Boring No. BRC-SB-09-C Henderson, Nevada Sample Recovery (feet) Sample Retained for Analysis Depth Elevation (MSLD) Sample Interval Sample Type Lithology **Well Construction Soil Description** #10 x 20 Sand Pack -60 For lithologic interpretation, see boring log BRC-SB-09-A Threaded PVC Well Base Cap Cement Backfill

Project No. 3850360

₩ MWH

Log of Boring: BRC-SB-09-C

Page 3 of 3

APPENDIX D AQUIFER PUMPING TEST DATA

Pumping Test Analysis Report

Project: BRC Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada Pumping Test: Step AA-09		Pumping well: AA-09	
Test conducted by: B. Peck		Test date: 6/26/2007	
Analysis performed by:	Step Test AA-09C	Date: 8/29/2007	
A 17 THE A COURT OF	Brack and a second process of the second pro	#00 III 0 III 1 1	

Aquifer Thickness: 33.70 ft Discharge: variable, average rate 7.4532 [U.S. gal/min]

Observation well	Transmissivity	T _K	Storage coefficient	Radial distance to PW	
Observation well	[ft²/d]	[ft/d]	Storage coefficient	[ft]	
AA-09	3.75 × 10 ²	1.11 × 10 ¹	2.27 × 10 ⁻³	0.35	

Pumping Test Analysis Report

Project: BRC Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada Pumping Test: Constant Rate A		Pumping well: AA-09
Test conducted by: B. Peck		Test date: 6/27/2007
Analysis performed by: G. P. Wittman Constant Rate Pump Test AA-09		Date: 9/10/2007
Aquifer Thickness: 33.70 ft	Discharge rate: 5.7 [U.S. gal/min]	

Calculation after Theis wi	th Jacob Correction				
Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW	
	[ft²/d]	[ft/d]		[ft]	
AA-09	3.25 × 10 ²	9.64 × 10 ⁰	3.95 × 10 ⁻²	0.35	
AA-09 OW	5.20 × 10 ²	1.54 × 10 ¹	5.72 × 10 ⁻²	29.29	
Average	4.23 × 10 ²	1.25 × 10 ¹	4.84 × 10 ⁻²		

Pumping	Test A	Analysis	Report
---------	--------	----------	--------

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada	Pumping Test: Pumping Test AA-09 Recovery	Pumping well: AA-20
Test conducted by:		Test date: 9/10/2007
Analysis performed by: G.P. Wittman AA-20 Recovery		Date: 9/10/2007
Aguifer Thickness: 22 90 ft Discharge: variable, average rate 2.1869 [U.S.		gal/min1

Calculation	offer	ACADIMAL -	Their	with	lacab	Correction	
Calculation	aπer	AGARWAL -	- Ineis	with	Jacob	Correction	

Observation well	Transmissivity	К	Storage coefficient	Radial distance to PW
	[ft²/d]	[ft/d]		[ft]
AA-20OW	1.19 × 10 ³	5.21 × 10 ¹	4.50 × 10 ⁻²	14.08
AA-20	6.80 × 10 ²	2.97 × 10 ¹	1.53 × 10 ⁻⁸	0.35
Average	9.37 × 10 ²	4.09 × 10 ¹	2.25 × 10 ⁻²	

Pumping Test Analysis Report

Project: BRC Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada	Pumping Test: Constant Rate Recovery AA-09	Pumping well: AA-09
Test conducted by: B. Peck		Test date: 6/28/2007
Analysis performed by: G. P. Wittman	Constant Rate Pump Test AA-09 Recovery	Date: 9/10/2007
Aquifer Thickness: 33.70 ft	Discharge rate: 5.7 [U.S. gal/min]	1

Calculation after AGARV	VAL + Theis with Jacob Corre	ection			
Observation well	Transmissivity [ft²/d]	K [ft/d]	Storage coefficient	Radial distance to PW [ft]	
AA-09	3.25 × 10 ²	9.64 × 10 ⁰	3.83 × 10 ⁻⁵	0.35	
AA-09 OW	4.84 × 10 ²	1.44 × 10 ¹	6.65 × 10 ⁻²	29.29	
Average	4.05 × 10 ²	1.20 × 10 ¹	3.33 × 10 ⁻²		

Pumping Test Analysis Report

Project: BMI Aquifer Test

Number: 83173

Client: BRC

Location: Henderson, Nevada	Pumping Test: AA-20 Step Test	Pumping well: AA-20	
Test conducted by: B. Peck, G. Wittman		Test date: 9/17/2007	
Analysis performed by: G. Wittman	Step Test AA-20	Date: 9/17/2007	
		new Person	

Aquifer Thickness: 22.90 ft Discharge: variable, average rate 3.5764 [U.S. gal/min]

Calculation after Theis					
Observation well	Transmissivity	K	Storage coefficient	Radial distance to PW	
	[ft²/d]	[ft/d]		[ft]	
AA-20	7.70 × 10 ²	3.36 × 10 ¹	2.99 × 10 ⁻¹⁰	0.35	

Pumping Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada	Pumping Test: Constant Rate Pump Test AA-20	Pumping well: AA-20	
Test conducted by: G. Wittman, B. Peck		Test date: 7/10/2007	
Analysis performed by: G. Wittman	Constant Rate Pumping Test AA-20	Date: 9/10/2007	
Aquifer Thickness: 22.90 ft	Discharge rate: 4 [U.S. gal/min]		

Calculation after Theis w	ith Jacob Correction				
Observation well	Transmissivity [ft²/d]	K [ft/d]	Storage coefficient	Radial distance to PW [ft]	
AA-20	5.20 × 10 ²	2.27 × 10 ¹	5.41 × 10 ⁻⁶	0.35	
AA-200W	1.58 × 10 ³	6.90 × 10 ¹	3.79 × 10 ⁻²	14.08	
Average	1.05 × 10 ³	4.59 × 10 ¹	1.90 × 10 ⁻²		

Pumping Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada	Pumping Test: Step- AA-08	Pumping well: AA-08	
Test conducted by: G. Wittman		Test date: 9/17/2007	
Analysis performed by: G. Wittman	Step Test AA-08	Date: 9/17/2007	

Aquifer Thickness: 44.34 ft Discharge: variable, average rate 22.4 [U.S. gal/min]

Calculation after Theis w	ith Jacob Correction				
Observation well	Transmissivity [ft²/d]	K [ft/d]	Storage coefficient	Radial distance to PW [ft]	
AA-08	8.50 × 10 ³	1.92 × 10 ²	5.00 × 10 ⁻¹	0.35	

Pumping Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada	Pumping Test: AA-08	Pumping well: AA-08EW	
Test conducted by:	- control	Test date: 6/1/2007	
Analysis performed by: G. P. Wittman	Constant Rate Pump Test AA-08EW	Date: 6/1/2007	
Aquifer Thickness: 44 34 ft	Discharge rate: 29 [LLS_gal/min]		

Calculation after Theis w	ith Jacob Correction				
Observation well	Transmissivity [ft²/d]	K [ft/d]	Storage coefficient	Radial distance to PW [ft]	
AA-08EW	2.90 × 10 ⁴	6.54 × 10 ²	3.85 × 10 ⁻³	0.35	
AA-08A	2.50 × 10 ⁴	5.64 × 10 ²	9.20 × 10 ⁻²	29.35	
AA-08B	3.75 × 10 ⁴	8.46 × 10 ²	2.92 × 10 ⁻²	63.66	
Average	3.05 × 10 ⁴	6.88 × 10 ²	4.17 × 10 ⁻²		

Pumping Test Analysis Report

Project: BMI Aquifer Test

Number: 83173 Client: BRC

Location: Henderson, Nevada	Pumping Test: Constant Rate Pump Test AA-08	Pumping well: AA-08EW	
Test conducted by: G. Wittman		Test date: 6/1/2007	
Analysis performed by: G. Wittman	Constant Rate Pump Test AA-08 Recovery	Date: 9/17/2007	
ABBURGA BOTO SERVICE CONTROL OF THE PROPERTY O	THE SECTION AND ASSESSED TO SECTION ASSESSED ASSESSED ASSESSED ASSESSED.	A COMPRESSION	

Aquifer Thickness: 44.35 ft Discharge: variable, average rate 23.181 [U.S. gal/min]

Calculation	after	AGARWAL -	- Theis
-------------	-------	-----------	---------

Observation well	Transmissivity [ft²/d]	K [ft/d]	Storage coefficient	Radial distance to PW [ft]
AA-08EW	1.85 × 10 ⁴	4.17 × 10 ²	5.00 × 10 ⁻¹	0.35
AA-08A	1.98 × 10 ⁴	4.46 × 10 ²	1.48 × 10 ⁻¹	29.35
AA-08B	2.00 × 10 ⁴	4.51 × 10 ²	4.09 × 10 ⁻²	63.66
Average	1.94 × 10 ⁴	4.38 × 10 ²	2.30 × 10 ⁻¹	

6/1/07

6/1/07

6380 Polaris Avenue
Las Vegas, Nevada 89118
(702) 736-2936 Fax (702) 361-9094

DRILLING LOG
Well No. AA-09-OW

Project Name: Site Location:

BRC Aquifer Test Henderson, NV

Start Date: End Date:

Logged By: Davis Checked By:G. Carter

Project No:

83173 **BRC**

Total Hole Depth (ft): 70 Hole Diameter (in): 8 2 Well Diameter (in):

Client: Drilling Company: Drill Rig Type:

Boart Longyear B.L. - GP24-300RS

Water Level (Initial, Ft): 32

Permit No .:

Drilling Method:

Roto-Sonic

Screen Length (ft): 30-70

Ground Surface Elev.: 1692.90 feet NAVD88 Sampling Method: Continuous Core

(feet)	Graphic Log	Soil / Geologic Description	Sample No.	Penetration / Recovery	Blows / 6"	PID Headspace (ppm)	Well Completion Details
0		SILTY SAND (SM): [FILL]			ш.		
		SILTY SAND (SM): Reddish Brown Silty Sand with Gravel, Corase Sands					
0		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand					
		SILTY SAND (SM): Reddish Brown, Silty Sand with Gravel and Coarse Sand					Bentonite chip seal
	0.0.	SILTY GRAVEL (GM): Reddish Brown, Silty Gravel with Sand					
0		SILTY SAND (SM): Reddish Brown, Silty Sand with Gravel					
-		SILTY GRAVEL (GM): Reddish Brown Silty Gravel with Sand					
30		SILTY SAND (SM): Reddish Brown, Silty Sand with Gravel					2" diameter Schedule 40 PVC casing
		CLAYEY SAND (SC): Reddish Brown, Clayey Sand/Silty Sand with Gravel					
-		SILTY SAND (SM): Reddish Brown, Silty Coarse Sand with Gravel					

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

DRILLING LOG Well No. AA-09-OW

Project Name: Site Location:

BRC Aquifer Test Henderson, NV

Start Date: End Date:

6/1/07 6/1/07

70

8

Logged By: Davis Checked By:G. Carter

Project No:

83173

Total Hole Depth (ft): Hole Diameter (in):

Client: Drilling Company:

BRC

Permit No .:

Drill Rig Type:

Boart Longyear

Well Diameter (in): 2 Water Level (Initial, Ft): 32

Drilling Method:

B.L. - GP24-300RS Roto-Sonic

Screen Length (ft): 30-70

Sampling Method: Continuous Core

Ground Surface Elev .: 1692.90 feet NAVD88

Log of Boring No. BRC-SB-09-C

BMI Site - Hydrogeologic Characterization

Drilling Method: Sonic

Drilling Equipment: Rotary Sonic

Drilling Contractor: ProSonic

Driller: ProSonic

Borehole Total Depth: 67 ft bgs 8.5 in **Borehole Diameter:**

Location 9 (Well ID: MCF-09B) **Boring Location:**

Depth to Water (ft. bgs): NA

Sample Type: N/A Sample Interval Cont.

Logged By: Jennifer Wiley Date Started: 06/09/04 Date Completed: 06/09/04 Type of Surface Seal:

Blank Casing Type/Size: Screen Type/Size:

4" Sch 80 PVC 4" Sch 80 PVC **Transition Sand Type:** N/A

Monitoring Well Construction Screen Slot Size: Bentonite-Grout

Top of Screen (ft. bgs): Bottom of Screen (ft. bgs):

0.010 in 105 ft bgs 125 ft bgs

Basic Remediation

Type of Sand Pack:

#2 x 12

Depth on (MSLD)	le Type	le Interval	ole Recovery (feet)	le Retained Analysis		ЭЭУ	
De	Sample	Sample	Sample	Sample for A	PID	Litholog	Soil Description

Well Construction

Project No. 3850360

MWM

Log of Boring: BRC-SB-09-C

Page 1 of 3

BMI Site - Hydrogeologic Characterization Basic Remediation Log of Boring No. BRC-SB-09-C Henderson, Nevada Sample Retained for Analysis Sample Recovery (feet) Depth Elevation (MSLD) Sample Interval Sample Type Lithology **Well Construction** Soil Description Bentonite seal -30 For lithologic interpretation, see boring log BRC-SB-09-A -40 #10 x 20 Sand Pack 4" 0.010 Slot PVC screen -50

Project No. 3850360

Log of Boring: BRC-SB-09-C

BMI Site - Hydrogeologic Characterization Henderson, Nevada Log of Boring No. BRC-SB-09-C | ((ag) | (ba) |

Project No. 3850360

(III) MWH

Log of Boring: BRC-SB-09-C

Page 3 of 3

KLEINFELDER

Henderson, NV

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

55

DRILLING LOG Well No. AA-20-OW

Project Name: Site Location: **BRC Aquifer Testing**

Start Date: End Date: 6/02/07 6/02/07 Logged By: Davis

Project No:

83173

Total Hole Depth (ft): Hole Diameter (in): Checked By:G. Carter

Client:
Drilling Company:

BRC Boart Longyear Hole Diameter (in): 8
Well Diameter (in): 2

Permit No.:

Drill Rig Type: Drilling Method: Boart Longyear Roto-Sonic Water Level (Initial, Ft): 24
Screen Length (ft): 15-55

Sampling Method: Continuous Core

Ground Surface Elev.: 1625.69 feet NAVD88

55

DRILLING LOG Well No. AA-20-OW

Project Name: Site Location:

BRC Aquifer Testing

Henderson, NV

Project No: 83173 BRC

Client: Drilling Company: **Boart Longyear** Drill Rig Type: Boart Longyear Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Start Date: 6/02/07 End Date: 6/02/07

Hole Diameter (in): 8 Well Diameter (in): 2 Water Level (Initial, Ft): 24 Screen Length (ft): 15-55

Total Hole Depth (ft):

Ground Surface Elev .: 1625.69 feet NAVD88

Logged By: Davis Checked By:G. Carter

Permit No .:

Log of Boring No. BRC-SB-20-A

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Drilling Method: Rotary Sonic
Drilling Equipment: Rotary Sonic

Drilling Contractor: Prosonic Corporation

Driller: Don Youngblood

Borehole Total Depth: 78.5 ft bgs Borehole Diameter: 8.5 in

Boring Location: Location 20 (Well ID: AA-20)

Monitoring Well Construction

Depth to Water (ft. bgs): 16.5 ft bgs

Ď.

Sample Type: Split-Spoon (2"ID)

Sample Interval Varies

Logged By: Adam Norris Date Started: 7/10/04 Date Completed: 7/11/04 Type of Surface Seal:

Blank Casing Type/Size: Screen Type/Size: Bentonite-Grout 4" Sch 80 PVC 4" Sch 80 PVC

N/A

Screen Slot Size: Top of Screen (ft. bgs): Bottom of Screen (ft. bgs):

Type of Sand Pack:

0.010 in -10 ft bgs -30 ft bgs #2 x 12

V

Basic Remediation

Transition Sand Type:

Sample Type
Sample Interval
Sample Recovery
(feet)
Sample Rectovery

PID

Soil Description

Well Construction

Project No. 3850360

M MWH

Log of Boring: BRC-SB-20-A

Page 1 of 3

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Log of Boring No. BRC-SB-20-A

Depth evation (MSLD)	Sample Type	Sample Interval	Sample Recovery (feet)	Sample Retained for Analysis	PID	ithology	Sail Description	Well Construction
Elev	Sa	Sa	Sa	Š	₹	Ē	Soil Description	

Project No. 3850360

(III) MWH

Log of Boring: BRC-SB-20-A

Page 2 of 3

BMI Site - Hydrogeologic Characterization

Henderson, Nevada

Log of Boring No. BRC-SB-20-A

Sample Interval Sample Recovery (feet) Sample Retained for Analysis PID Lithology Lithology	Well Construction

Project No. 3850360

(III) MWH

Log of Boring: BRC-SB-20-A

Page 3 of 3

KLEINFELDEI

6380 Polaris Avenue Las Vegas, Nevada 89118

Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

6/5/07

DRILLING LOG Well No. AA-08-EW

Logged By: Davis

Permit No .:

Checked By:G. Carter

Project Name: Site Location:

Client:

BRC Aquifer Testing

Henderson, NV

Project No:

83173 BRC

Drilling Company:

Boart Longyear

Drill Rig Type: B.L. - GP24-300RS
Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Start Date:

End Date: 6/5/07

Total Hole Depth (ft): 60 Hole Diameter (in): 8

Well Diameter (in): 4
Water Level (Initial, Ft): 11

Screen Length (ft): 10-60

Ground Surface Elev.: 1578.39 feet NAVD88

6/5/07

6/5/07

60

DRILLING LOG Well No. AA-08-EW

Project Name: Site Location:

BRC Aquifer Testing

Henderson, NV

Start Date: End Date:

Logged By: Davis

Permit No .:

Project No:

83173

Total Hole Depth (ft):

Checked By:G. Carter

Client:

BRC

Hole Diameter (in): 8 4 Well Diameter (in):

Drilling Company: Drill Rig Type:

Boart Longyear B.L. - GP24-300RS

Water Level (Initial, Ft): 11

Drilling Method:

Roto-Sonic

Screen Length (ft): 10-60

Sampling Method: Continuous Core

Ground Surface Elev .: 1578.39 feet NAVD88

KLEINFELDER

6380 Polaris Avenue Las Vegas, Nevada 89118 (702) 736-2936 Fax (702) 361-9094

6/4/07

6/4/07

60

8

DRILLING LOG Well No. AA-08-OWA

Project Name:

BRC Aquifer Testing

Site Location: Henderson, NV Project No: 83173

Client: BRC

Drilling Company: Boart Longyear
Drill Rig Type: B.L. - GP24-300RS

Drilling Method: Roto-Sonic

Sampling Method: Continuous Core

Hole Diameter (in):

Start Date:

End Date:

Well Diameter (in): 2
Water Level (Initial, Ft): 11
Screen Length (ft): 10-60

Total Hole Depth (ft):

Ground Surface Elev.: 1577.90 feet NAVD88

Logged By: Davis
Checked By:G. Carter

Permit No.:

60

DRILLING LOG Well No. AA-08-OWA

Project Name: Site Location:

BRC Aquifer Testing

Start Date: Henderson, NV End Date:

6/4/07 6/4/07 Logged By: Davis

Project No:

83173

Total Hole Depth (ft):

Checked By:G. Carter

Client:

BRC

Hole Diameter (in):

Permit No .:

Drilling Company:

Boart Longyear

8 Well Diameter (in): 2

Drill Rig Type:

B.L. - GP24-300RS Roto-Sonic

Water Level (Initial, Ft): 11

Drilling Method: Sampling Method: Continuous Core

Screen Length (ft): 10-60

Ground Surface Elev .: 1577.90 feet NAVD88

DRILLING LOG Well No. AA-08-OWB

Project Name:

BRC Aquifer Test

Site Location: Henderson, NV

Project No: Client:

83173 BRC

Drilling Company: Drill Rig Type:

Boart Longyear B.L. - GP24-300RS

Drilling Method:

Roto-Sonic

Sampling Method: Continuous Core

Start Date:

6/5/07

8

2

10-50

End Date: Total Hole Depth (ft): 50

Hole Diameter (in): Well Diameter (in):

Water Level (Initial, Ft): 10.5 Screen Length (ft):

Logged By: Davis 6/5/07

Permit No .:

Checked By: G. Carter

50

DRILLING LOG Well No. AA-08-OWB

Project Name: Site Location:

BRC Aquifer Test

Henderson, NV

Project No:

Client:

83173

Drilling Company:

BRC

Drill Rig Type: Drilling Method: Roto-Sonic

Boart Longyear B.L. - GP24-300RS

Sampling Method: Continuous Core

Start Date:

6/5/07 End Date: 6/5/07

Total Hole Depth (ft):

Hole Diameter (in):

Logged By: Davis

Checked By:G. Carter

Permit No.:

Screen Length (ft): 10-50

Ground Surface Elev.: 1577.38 feet NAVD88

APPENDIX E

NDEP COMMENTS ON SEPTEMBER 25, 2007 VERSION AND CORRESPONDING RESPONSES November 1, 2007

Mr. Mark Paris Basic Remediation Company (BRC) 875 West Warm Springs Henderson, NV 89011

Re.: Nevada Division of Environmental Protection Response to: *Implementation of the Revised Aquifer Testing Work Plan* dated September 25, 2007

NDEP Facility ID# H-000688

Dear Mr. Paris:

The NDEP has received and reviewed BRC's document identified above and provides comments below and in Attachment A:

Please provide a revised report, including a fully annotated, response to comments letter **by December 15, 2007**. There are substantial compounded errors in this report, however the actual data from the investigation appears to be usable, pending additional quality assurance and potential re-analysis of raw data.

Should you have any questions or concerns, please do not hesitate to contact me at (702) 486-2850x247 or brakvica@ndep.nv.gov.

Sincerely,

Brian A. Rakvica, P.E. Supervisor, Special Projects Branch Bureau of Corrective Actions

BAR:s

cc: Jim Najima, NDEP, BCA, Carson City

Barry Conaty, Akin, Gump, Strauss, Hauer & Feld, L.L.P., 1333 New Hampshire Avenue, N.W., Washington, D.C. 20036

Brenda Pohlmann, City of Henderson, PO Box 95050, Henderson, NV 89009

Mitch Kaplan, U.S. Environmental Protection Agency, Region 9, mail code: WST-5, 75 Hawthorne Street, San Francisco, CA 94105-3901

Rob Mrowka, Clark County Comprehensive Planning, PO Box 551741, Las Vegas, NV, 89155-1741

Girard Page, Clark County Fire Department, 575 East Flamingo Road, Las Vegas, Nevada 89119

Ranajit Sahu, BRC, 311 North Story Place, Alhambra, CA 91801

Rick Kellogg, BRC, 875 West Warm Springs, Henderson, NV 89011

Sherry Bursey, Davis, Graham & Stubbs, LLP, 1550 17th Street, Suite 500, Denver, CO 80202

Tara Bahn, U.S. Department of Justice, PO Box 23896, Washington, DC 20026-3986

Craig Wilkinson, TIMET, PO Box 2128, Henderson, Nevada, 89009-7003

Kirk Stowers, Broadbent & Associates, 8 West Pacific Avenue, Henderson, Nevada 89015

George Crouse, Syngenta Crop Protection, Inc., 410 Swing Road, Greensboro, NC 27409

Nicholas Pogoncheff, PES Environmental, Inc., 1682 Novato Blvd., Suite 100, Novato, CA 94947-7021

Susan Crowley, Tronox, PO Box 55, Henderson, Nevada 89009

Keith Bailey, Environmental Answers, 3229 Persimmon Creek Dr, Edmond, Oklahoma 73013

Sally Bilodeau, ENSR, 1220 Avenida Acaso, Camarillo, CA 93012-8727

Lee Erickson, Stauffer Management Company, P.O. Box 18890, Golden, Co 80402

Stan Smith, Olin Chlor Alkali, PO Box 86, Henderson, Nevada 89009

Michael Bellotti, Olin Corporation, PO Box 248, 1186 Lower River Road, Charleston, TN 37310-0248

Curt Richards, Olin Corporation, PO Box 248, 1186 Lower River Road, Charleston, TN 37310-0248

Paul Sundberg, Montrose Chemical Corporation, 3846 Estate Drive, Stockton, California 95209

Joe Kelly, Montrose Chemical Corporation of CA, 600 Ericksen Avenue NE, Suite 380, Bainbridge Island, WA 98110

Jon Erskine, Northgate Environmental Management, Inc., 300 Frank H. Ogawa Plaza, Suite 510, Oakland, CA 94612

Deni Chambers, Northgate Environmental Management, Inc., 300 Frank H. Ogawa Plaza, Suite 510, Oakland, CA 94612

Robert Infelise, Cox Castle Nicholson, 555 California Street, 10th Floor, San Francisco, CA 94104-1513

Michael Ford, Bryan Cave, One Renaissance Square, Two North Central Avenue, Suite 2200, Phoenix, AZ 85004

Brian Giroux, McGinley and Associates, 425 Maestro Drive, Suite 202, Reno, NV 89511

Paul Hackenberry, Hackenberry Associates, LLC, 550 W. Plumb Lane B425, Reno, Nevada 89509

Attachment A

Section 3.2 Assess Short Term Water Level Fluctuations

This brief section appears to indicate that adequate water level data were obtained for pre-test trend observation. There is no mention of aquifer testing data correction using these data throughout the remainder of the report. This issue requires further discussion in the revised report.

Response: Comments noted and corrections to the aquifer test data for AA-20 have been made. An adjustment to water level changes over time was made (see Section 4.2.2).

Section 3.3 Soil Borings and Monitoring Well Installation and Appendix A (boring logs)

This brief section describes the drilling of ten soil borings and completing six as monitoring wells. Specific comments on boring/construction logs follow below. Noted deviations from work plan appear to be insignificant (i.e., Rotosonic drilling was used where hollow stem auger was proposed, AQTESOLV software was specified for use where Aquifer Test Pro was used, Agarwal method for recovery solution was not proposed in work plan). Other deviations (e.g., elimination of two aquifer tests based on slug testing results) are accounted for as results of professional judgment.

It is noted that location AA-06 is screened across the Quaternary Alluvium (Qal)/ Muddy Creek formation (MCf) contact, however, the water bearing zone is currently only in the MCf. Future monitoring results should be evaluated for this fact if the water level rises substantively.

Locations AA-08EW, AA-08OWA, AA-08OWB, AA-09OW are also screened across the Qal/MCf contact and the water bearing zone extends to the top of screen. Hence in this case both formations are being evaluated; monitoring results should be "flagged" for this fact.

Location AA-20OW, it appears that the MCf includes silty sandstone (SS), logged at 48 - 55 feet. The MCf is also noted as SS in other borings at depth. Please explain.

Response: AA-06 is a boring and not a new monitoring well. The log shown in Appendix A and Table 1 of the report incorrectly lists AA-06 as a new monitoring well. This is corrected in the revised report in the AA-06 boring log (Appendix A), Table 1, and Plate 1.

New monitoring wells AA-08EW and AA-08OWA both have screens that cross the Qal/MCf contact. The screen in monitoring well AA-08OWB is entirely within the Qal. The two wells screened across the Qal/MCf are noted and are "flagged" as an alert on their respective logs (see Appendix A) for future monitoring purposes.

Monitoring well AA-09OW is screened across the Qal/MCf contact and was also "flagged" as an alert on its logs(see Appendix A) for future monitoring purposes.

The Upper Muddy Creek Formation is primarily silts and clay but occasionally includes discontinuous sandy lenses. The sand lenses can be several feet thick but are discontinuous and difficult to correlate between borings.

Mr. Mark Paris 11/20/2007 Page 4

Upper Muddy Creek Formation: The fine-grained lacustrine facies of the Upper Muddy Creek Formation are dominated by silts and clays, but also include discontinuous sand layers and lenses. (Kleinfelder, 2005).

Reference: Kleinfelder, 2005. Hydrogeologic Investigation – 2005, Phase V Drilling, American Pacific Corporation, Henderson, Nevada. July 27.

Section 3.6 Laboratory Testing

This section inadequately describes the laboratory testing of soil properties: only a brief listing of the sum of performed analyses is given, and there is no mention of these activities or reported results throughout the remainder of the report. The NDEP is left to parse through the voluminous Appendix B laboratory results, and to assemble these results into a spatial relationship. Further development of these data is requested (i.e., cross sections, maps, correlations with bore logs, etc.).

Incorporation of this data to the CSM should be either presented, or the report should refer to the document or process where incorporation will be made, or this report should be an Attachment to the document which does incorporate results into CSM. Since the CSM will likely be generated after the groundwater model it is suggested that these items be submitted with the revised report.

Response: The soil property results will be used to develop the conceptual site model in a separate document. The soil properties will also be used to assign values to the computerized groundwater model based on the conceptual site model. This is noted in the revised report text in Section 3.6.

Section 4.1 Slug Testing and Appendix C

The description of activities and results is brief. All basic descriptions are provided, however details are lacking within this section. Field logs and raw data should be provided. The results and the interpretation of analysis also lack detail. Additional detail should be provided in the revised report.

Response: Comment noted and more detail is included in the revised report in Section 4.1. The CD copy of the report also contains the raw slug test data in spreadsheet format.

Two slug-in tests and two slug-out tests are generally performed at each location. Slug out tests usually result in calculation of higher K - this is not the case with many of the test pairs, which may indicate that slug-out tests generally produced good data. This is probably due to relatively low formation K, and the high contrast between formation and gravel pack. This matter should be discussed in the revised report.

Response: Comment noted and more detail is included in the revised report in Section 4.1.

Slug-in and slug-out K's, for both initial and secondary tests, appear to group well - K's vary by less than a factor of 2. Given that K generally varies by orders of magnitude in nature, the tight grouping of K's for each location appears good. This matter should be discussed in the revised report.

Response: Comment noted and more detail is included in the revised report in Section 4.1.

Total initial displacement is not reported for these tests, the NDEP finds that information helpful for quality assurance. Slug tests should generally displace 10 to 50 cm (Kruseman and de Ritter, 1970) in typical monitoring wells, in order to affect formation water levels substantively. Please provide this information and discuss this matter in the revised submittal.

Response: Comment noted and the displacement by the slug has been added to Table 3. The initial displacement of groundwater in the wells fell within the 10 to 50 cm range in all cases using either the 10-foot or the 5-foot slug.

Initial and secondary responses, and ending data noise, are evident in most test responses. The tests all correctly focus on the secondary response, versus the primary gravel pack response. This matter should be discussed in the revised report.

Response: Comment noted and discussion of the selected response are included in the revised report in Section 4.1.

Section 4.2 Pumping Tests and Appendix D

Again, description of activities and results is brief. Field logs and raw data are not presented and should be in the revised report. Based on the volume of error and questionability described below, NDEP highly recommends that raw data be included in electronic copy. Also necessary for future user reanalysis will be well logs for previously existing wells that were used for these tests. Specific comments for tests are provided below. In general the tests appear to have been performed using good SOP. The major points of good testing appear to have been covered: pre-test water level data were collected, constant pumping rates were determined using step testing, constant pumping rates were generally employed successfully, pumped water was containerized, sufficient water level data density appears to have been achieved, recovery testing was conducted at each location, monitoring wells were generally close enough for response measurement.

Response: Comment noted and all monitoring well logs used in the tests have been included in the revised report Appendix D. The data loggers were set with either a one second interval or a one minute interval depending on the proximity to the pumping well. The timing of the water level records produced rather large electronic data files. The raw data is included along with the electronic version of the report on a CD since the data collected from any single well would be several hundred pages of data.

One of the six planned tests (AA-26) was not conducted due to lack of site access agreement. This location lies at the furthest north-east portion of the site, near the Las Vegas Wash. Two other tests were not performed; however, the rationale (low expected K from results of slug testing) is acceptable. Tests were not run for long enough period to calculated specific yield. This parameter may be important for future modeling, and will have to be assumed within reasonable ranges, and may need to be used as a sensitivity parameter.

Response: Comment noted. The comment "Tests were not run for long enough period to calculated specific yield." not understood unless this comment refers to no storativity values available with slug testing.

K was calculated for each location using data from multiple tests (including step, constant rate, and recovery tests). The values are all tabulated for each location (good) and the average is also calculated. A better group statistic is the geometric mean (versus arithmetic mean), since K varies over orders of magnitude in nature. NDEP's calculations (below) show that the geometric mean of the K values differ from the simple mean by as much as 20%. This is more appropriate for the end-user, and is less important for this document. Hence, a report of any data statistic may be beyond the scope of this document.

Response: Comment noted and geometric mean values have been listed in the Tables 5, 7, and 9.

Tabulated Ks	AA-09	AA-20	AA-08
K (ft/d)	18.8	78.1	256
	35	26	1000
	61.9	79	1020
	21.5	85.2	900
	34	14	566
			571
mean	34.24	56.46	718.8333
Geometric mean	31.24	45.33	668.01
Percent difference	8.7%	19.7%	7.1%

Pre-test data appear to indicate generally less than 0.1 foot/day changes. No correction to test data appears to be necessary (and none reported either).

Response: Comment noted.

Section 4.2.1 Pumping Test at AA-09

Table 5 reports K=34 ft/d for AA-09OW recovery test, however Appendix D reports 46.5. Please clarify which is the correct value. Using Appendix D value instead of tabulated value, final geometric mean K equals 33.3 ft/d, which is very close to tabulated value. However, the corrected figures should be consistently reported (this sort of error is repeated for AA-20 test group detailed below).

Appendix Ks	AA-09		AA-20	AA-08
K (ft/d)		18.8	78.1	256
		35	26	1400
		61.9	79	1430

	21.5	85.2	<mark>1260</mark>
	<mark>46.5</mark>	140	566
			571
Geometric mean	33.26	71.84	817.67
from Tablulated Ks above	31.24	45.33	668.01
Percent difference	6.1%	36.9%	18.3%

Response: Comment noted and the value for AA-09 was checked in the revised report and the numbers reported are consistent between the text and Appendix D.

These calculated K values are consistent with common charted values (Freeze and Cherry '79) for silty sand to middle clean sand. The AA-09OW lithologic log compares with that classification for only the upper 4 feet of aquifer, and is relatively inconsistent for the lower 35 feet (clay, sandy clay and sandstone). The log for well AA-09 was not provided, however, based on the AA-09OW log, 34 ft/d is very fast for a clay. Please explain if the AA-09 log differs greatly from AA-09OW. If not please justify this inconsistency.

Response: An expanded discussion about the K values in the AA-09 Pump test was included in the revised report in Section 4.2.1.

Tests for AA-09: aquifer thickness parameter is listed as 20 feet for the step test and recovery solutions, but is listed as 10 feet for the constant rate test (Appendix D). Please clarify which is correct. This sort of error is repeated for AA-20 test group detailed below.

Response: Comment noted and corrections have been made in the revised report in Appendix D and reflected in Table 5 showing the correct thickness of the aquifer (33.7 feet).

Log AA-09-OW shows 38 feet of saturated thickness. If AA-09 has similar screen and lithology, then the 10 or 20 foot aquifer thickness parameter (which ever is the correct value, see above) for this test analysis should be reviewed. Since the Theis Equation solves for transmissivity (T=KD), an incorrect K by factors of 2 or more can be calculated easily using the wrong aquifer thickness D.

Response: Comment noted. The saturated thickness values have been checked on all of the aquifer tests and corrected in Appendix D and reflected appropriately in Table 5 (33.7 feet).

Section 4.2.2 Pumping Test at AA-20

All of the errors described above are observed here for this group of tables, logs and test solutions. NDEP requests that BRC re-address all aquifer testing (and slug testing) materials for correctness and consistency.

Response: Comment noted and corrections have been made in the revised report text and tables in Section 4.2.2.

Mr. Mark Paris 11/20/2007 Page 8

Table 7 reports K=14 ft/d for AA-20OW recovery test, however Appendix D reports 140. This translates to a 37% difference between tabulated versus appendix group geometric mean. Tests for AA-20: Aquifer thickness parameter is listed as 10 feet for the step test and recovery solutions, but is listed as 20 feet for the constant rate test (Appendix D). Only one value should be correct, please clarify.

Response: Comment noted and corrections have been made in the revised report in Appendix D and reflected in Table 7 showing the correct thickness of the aquifer (22.9 feet).

Log AA-20-OW shows 31 feet of saturated thickness, in clays and silts. The log for well AA-20 was not provided; however, if AA-20 has similar screen and lithology, then the 10 foot or 20 foot aquifer thickness parameter for these test analyses should be reviewed. The Theis Equation comment provided above applies here as well.

Response: Comment noted. The saturated thickness values have been checked on all of the aquifer tests and corrected in Appendix D and reflected appropriately in Table 7 (22.9 feet).

Section 4.2.3 Pumping Test at AA-08

Table 9 lists three K values (for constant rate test) that do not match Appendix D values (see Table above). This translates to an 18% difference between tabulated versus appendix group geometric mean.

Response: Comment noted and corrections have been made in the revised report in Appendix D and reflected in Table 9 showing the correct thickness of the aquifer (44.34 feet).

Tests for AA-08: Aquifer thickness parameter is listed as 35 feet for the step test and constant rate solutions, but is listed as 25 feet for the recovery test (Appendix D). Only one value should be correct, please clarify.

Response: Comment noted. The saturated thickness values have been checked on all of the aquifer tests and corrected in Appendix D and reflected appropriately in Table 9 (44.34 feet).

APPENDIX F FIELD LOGS FOR AQUIFER TESTS

Environmental Field Daily Report

	2	1 10 10-3	
Project Name :	BRC Agular Tost	Date: (U) \$4,67	Report #:
Project / Task # :		Site Location: AA - 09 Step Test	
Field notes continu	ned:	10	
	/350		
	lepth Slad @ 1340	7, & see intervals, 5gpm	
22, 20			12.1
20.83	20.3(4	20,15 0 1412	13.04
20.81	20,40	20.15 @ 1413	14.22
20.59	20.30	20.06 @ 141\$	15.65
30,67	20.12	20.11 (2 1415	16.72
20.65	20.27	20.69 @ 1420	17.74
20.58	20.20	20.12 (2/425	18.60
20,58	20 . 2 8	20.12 @1430	19.01
20.61	20.19	20. 03 (14.35	19.25
20.47	20.21	20.01 @ 1440	19.50
20.59	20.26	19.95 (14 45	19:55
20.47	20.36	19.94 3/450	19.66
20.48	20.30	19,89 @ 1458	19.70
20.47	20.)7	19,99 @1500	19.81
20, 53	20.34	1983 015084	19.69
20,20	20,28	19.92 @ 1510	19.68 @1826
20,36	20.18	19.72 01815	19.85
20,36	20.16	19.82 C1516	19.80
20.41	20,14	-1 19.86 015.17	19.72
20.3S	20.27	19.80 C1518	19.52
20,38	20.17	19.88 @1519	19.71
20.33	20.31 @ 1400	19.89 01520 -	19.76 (1527
20.34	20.21	8.21 0/521	19.66
Qo .33	ZO.(B	5.68 /Sgpm	19.78
20.32	20.13	3.25 10 \$ sec	19.65
20.30	20.19	0.52	19.63
20.29		- 0.02	19.60
20.35.	T20.27 @ 1402	-0.04	19.54 @ 1528
20.32	2 20.15 (1403	-0.03	19.54
20.45	£ 20.17 C 1404	1.49 5ggm	19.63
2045	20.23 (1.1405	3,16 10 xxc	19.57
20.47	20.23 (1406	4,96	19,51
20.33	20.17 @ 1407	6.26	19.57
20.37	20.24 (1408	7,67	19.68 @ 1529
20.34	20.13 (4.14.09	9.08	19.67
20.28	20.69 @ 1410	10.49	19.672
2930	20.10 C 1411	11.75	19.66

EDFR Submitted to	:	 	
EDFR Submitted to	:		

Reviewed by :

Signature:

Environmental **Field Daily Report**

Page 2 of 2

Project Name: BRC Agailer Tes	+	Date : 6/20/07	Report # : 人
Project / Task #: 83/ 73		41-09 Step Test	
Field notes continued :		0	
19.59	17.85	17.24	1.62 @1654
19.65	17.90	17.35	0.99 61654.5
19.60@1830	17.73	17.45 C 1549	0.38 (1655
19.72	18.01	17.27	-0.03 C1658.5
19.76	17.87	17.24	
19.80	17.45C1543	17.36	6.04 (1656.5
19.78	17.58	17.14	21.11 0 1700
19.84	17.61	17.22	21.33 @ 1706
19.88 @1531	17.70	1 17.36 @ 1550	21.49 @ 1717
19.81	12.21	17.16 @ 1551	
19.80	14.81	17.38 @1552	
19.91	17.30 C1544	17.24 @ 1553	
20.00	* * *	17.24 01554	
19.98	1742	17.11 @1855	
19.93 6/532	17.37	17.07 (71556	
19.67 @1833	17.32	19.29 @ 1587	
19.57 @1534	17.34 @ 1545	17.79 01558	
19.79 @ 1535	17.18	17.30 @1559	
19.78 @ 1834	17.42	17.07 @ 1600	
19.63 @ 1537	, ; ;	50° 16.09 C 1605	
1974 @ 1538	17.32	1539 01610	
19.65 C1539	17.31	16.51 6/618	
19,72 @ 1539.5	17.32 @1546	14.12 0/620	
19.59 10 Sec	17.24	15.49 (16.25	
19.63	17.27	11.93 0/630	
19.58	17.14	10,97 (1633	
19.33 \$ 1 gam (2/340	17,41	10,32 @ 1640	
18,93 10 sc	17.47	8.48 (16845	
18.77	17.34 @ 1547	V 7.51 @ 1646	
18.60	12.29	IMIN 6.47 @ 1447	
18.29	17.24	6.16 (1648	
18.08 (7 1541	17.11	5.57 01649	
18.08	17.27	5.23 @ 1650	
17.95	17.22	4.44 0 1657	
17.95	17.14 C 1548	3.55 (7/652	
18,00	17.24	3.64 3/652.5	
17.81	17.30	2.75 @ 1653	
17.83@ 1542	17.16	2.18 @ 1653,5	

EDFR Submitted to :	
Reviewed by :	Signature :

Signature : ____

KLEINFELDER		K	L	E	- Anne construction	N	F	E	L	D	E	R
-------------	--	---	---	---	---------------------	---	---	---	---	---	---	---

Environmental

Project Name: 83173 ?	BRC Do To				
	DEC INTUINI US	4	Date :	6 27607	Report #:
	Sit	e Location : AA	-09 Car	rsbut Rese	
Field notes continued:					
wel	Doth	Time			
AA-09-0W	36.33'	0927	7		- Depth to wa
MCF-093	36.1	0931	1 by 2	founder	0
MCF-09A	38.27	0935) 0		
AA - 09	22.07	0937	- bud	atalogser	- Depth of tra
Submergo Time	dHJ	AA	DF.	AH/AL	
Has constant ra		Sspm, sta			AM Q 5.0
7 20.13 € 1005	1.94	1.94	5mg		8 falmi (Rote
20.03 @ 1030	2.04	\$0.1	<i>వ</i> ిక	0.004	
19.76 @ 1104	2.31	0.27	34	0.008	
19.34 01144	2071	0.4	42	0.009	
19.44 C 1230	2,63	-0.08	44	- 0.002	
19.23 @ 1306	2.84	0.21	36	2.006	
19.10 01340	7.97	0.13	34	0.004	
19.63 @ 1430	2044	- 0.53	50	-0.011	
19.06-1448	3.01	0.57	18	3م رو	
18.94 - 1500	3.13 [.]	0.12	12	0.01	
			-		
Reading An-09-0	W by sounder				
36.63 C	1525 = 0.60	' over 5:21	Thrs =		
18.744 @ 1530	3.326	0,196	30	0.0665	•
18.90 C 1650	3.17	-0.156	80	0.0019	٢
18.64 @ 1717	3,43	0.26	27	0.0096	
18 3200 1965		0.2%			
		•			

EDFR Submitted to :

Reviewed by :

Total	12er 41	2. STEP 7 .529156	(5m a 1)	#1)	Page	19
Sensu.						
DATE	Tim E	Reading	<u>A</u>	<u>EV</u>	Flow Rate	
6.26.07		33 7.4				**************************************
	13:50	3351.8				
	15:51	33980				
	3:52	3363.0				
	13:53	3368.8				
	13:54	33 74 4				
	13:55	3 3 80. 2				
	13:56	3385.7				
	13:57	3391.4				
	\3\58	3397.1				
	13:59	3404.1				
	13:59 14:00 13:60	3408.3				
	14:01	3413.9				
	14:02	3419.6				
	14:03	3425.3				
	14:04	3430.8				
	14:05	3436.5				
	14:06	3442.6				
	14:07	3447.6		101 mm		
	(4:08	3453.1				
	14:09	3458.9				
	14:10	3464.6				
-	[4:1]	3470146				
	[4:12	347 5.6				
	4:13	34 8 1.1				
	14:14	3486.7				
	14:15	3492.2				
	(4:14	3497.4				
	14:17	3503.0				
	[4:18	3508.5	.)			
	[4: 19	3514.3				
	14:20	3520,2				
	14:22	3531.4				+
	1424	3542,3 3553,2				
V	14:26	3564.3 s	1.8 gpn	LT-cl.		

Page Zof STEP TEST - AAO9 JMay #1 Rotamek ET Flow Rates Date Time Δ healing 357504 6/26/07/4:30 359701 14:34 14.40 14:41 3635,7 3646.7 14:43 14.45 3658,0 4.8 3685.2 14.50 5,0 14:55 371 2.7 3740,Z 15:00 3767.7 15:05 15:10 3795.3 15:15 3822.9 15:19 3845.3 15:20 3850.9 15 21 Briefly at 15 GPM but rapid DD fo bowls. 15 21 (30) Back to 5 GPM 757EP 15 Z1 15:25 3892.6 15:30 3920.3 15:36 395 Z.6 9.14 15:39 7.5 GPM 15 40 15 40:(30) 3 9 9 9.0 15:41:00 3982.8 15:43 3998.8 15:46 4023.1 4046.8 15:49 4054.6 15:50 4078.2 15:53 4093.7 15.55 4116.6 15:58 413202 16:00 4148.1 16:02 417 1.5 16:05 16:11 42/8.7 4249.1 16:15 16:27

AA 09	Constant	RATE TEST	•					00-		
Amco	172980	000	(2 N	B INLIN	6 = Dau	snstr	cam)	HG!	EI/	
Initial	Reading 1	 2 (.2								
DATE	TIME	RDG	4	ET	Q					
6.27.67	TIME 10:00	21.2				I,	17/10	ž/	Ra	19.
	(0:01	27.1	5.1							7
	10:02	32.8	5.7							
	10:03	38.6	5.8							
	10:04	44.2	5.4				-			
	10:05	50.0	5.8							
	10:06	55.8	<i>্</i> ১. ব							ļļ.
	10:07	6 (.4	5.4	1						
	10:08	67.1	5.7	<u> </u>						
	10:09	72.7	5.6			4				
	[0:10	7 8.6	5.9							-
	10:11	8 41.2	5.6	<u>t</u>					~	
	10:12	90.0	5,8	1				The state of the s		1
	10:13	9 5,7	ځ^. 7							
	10:14	101.4	5.7		5.65				,	
	10:16	112,7	11.3	2	J. L.J					
	10:17	118.4	5.9 5.7							1
	10:18	124.3		1						
	10.11	130.0	5.7	1						
	10:20	35.8	5.8	1.						
	10:21	141.4	5.6							1
	10:22	147.3	5.9				-			
	10.23	153.1	5.8	<u> </u>			+,			
	10.24	158.8	5.7		//					
	10.25	164.5	5,7							1
	10:26	[76.2	5.7 5.8							
	10:21	176.0	5.7							
	10:28	187.6	5.9							-
100	(0.30	193.2	5.6							
		198.8	5.6							
	10:31	204.2	5.4							
	10:32	209.4	5.2							
	10:34	214.3	49					7		1
	10:35	219.7	5.4		7)		1			
	10:36	22,5.5	5.8							
		442,3	<u> </u>				<u> </u>			4

AAna	Constant		77 to 20	(a. > p < 47% b	61-p 1 - 1 - 1 - 1 - 1 - 1	14 700
ппоч	CONSTANT			The second secon		PAGI
Amco	17298	000 (2~	D INLINE	Downstr	eam)	
DATE	TIME	RDG		EĪ		
6:27.07	10:39	242.5		3	5.67	
	10:41	254.0	11.5	2	5.75	
	10:43	265.3	41.3	2	5, 1,5	
	10:46	282.4	17.1	3	5.7	
	10:48	293.9	11.5	2	5.75	
	10:50	3 6 5 3	1.4	2	5.76	
	10:52	316.7	11.4	2	5.70	
	10,54	328.2	11.5	2	5.75	
	10:56	339.6		2.	5.70	
	0:58	351.2	11.4	2	5.80	
	16:59	3 6 8.5	17.3	3	5.77	
	11:03	3799	4.4	2	5.7	
	(1:05	391.4	11.5	2	5.75	
	11:07	403.2	(1.8	2	5.9	
	11:09	414.7	11.5	2	5.75	
	11:12	43 2.1	17.4	3	5.8	
	11:14	44 3. 7	11.6	2	5.8	
	u:17	461.1	<u> </u>	3	5.8	
	11:20	478.4	17.3	3	5.77	
	(1:22	48 9.8	11.4	2	5.7	
	11:24	501.4	11.6	2	5.8	
	11:26	5129	11.5	2	5.75	.,,
	11:29	53.02	17.3	2	8.65	
	//:3/	54.16	11.4	2 .	5.70	
	11:33	55:34	11, 8	2	5.90	
	11:35	56.51	8.1	2	4.05	
	11:37	54.16 55:34 56.31 57.69	11.8	2	5.90	
	11:31	587, 6	10.9	2	5.45	
	11:41	599.1	11.3		5.65	
	11:44	616.4	17.3	3	5.74	
	11:46	628.0	11,6	2	5.8 5.7	
	11:48	639.4	11.4	2.	5.7	
	11:52	6635	2 3.1	\$4 5	5.78	
	11:57	691.1	28.4	5	5.72	
	12.07	719.5	28.4	5	5.68	
	12:07	748.2	28.7	5	3,74	
	12:12	777.1	28.9	5	5.78	

A A 0.9 (or	stant Ri	E Test	*	\$1.7 A 71.4 A 52.4			og var egt i	The state of the s
						PAGE	3/	
AMCO 17	298000	(2NO 4	n Lings de	owns tre	. • • • • • • • • • • • • • • • • • • •			
DATE	TIME	RD G	Δ	ЕΤ	Q			
6-27-07	12:17	805.7	28.6	5	5.72			
	12:22	834.3	28.6	5	5,72			
	12:27	863.5	29,2	5	5.84			ļ
	12:32	891.5	28.0	5	5.60	}		
	12:37	920.4	28.9	5	5,78			
	12:42	949.0	28.6	S	5.72			
	12:47	978.0	29.0	5	5.80	ļ		
	12:52	1007.1	29.1	5	5.82			
	12:57	1035.8	28.7	5	5.74			
	/3:02	1062,0	26.2	5	5.24			
	13:07	1090,3	28.3	5	5.66			
	13:12	1118.7	28.4	5	5. 68			
	13:17	1147.2	28.5	5	5.70			
	/3:22	1174.8	27.6	5	5.5.2			
	13:28	1209.4	34.6	6	5.77			ļ
	13:34	1243.4	34.5	6	5.75			
	13:39	127 2.1	29.1	5	5.82			
	13:44	1299.6	27.5	5	5.5			
	13:4952	(343.0	43.4	8	5.43			
	13:57	1371.0	28.0	5	5.60			
	14:02	139 8.5	27.5	5	5.50			
	14:12	1454.5	56	10	5.60			
	14:21	1504.3	49.8	9	5, 53			
	14:35	1551.5	77.(14	5.51	ļ		
	14:42	1625.5	44.0		6.29	ł		
	14:57	1704.5	79.0	15	5.27			
	15:13	1794.7	90.2	15	6.01			ļ
	15: 18	1877.2	82.5	15	5.5			
	15:42	1956.4	79.2	14	5.66 5.7			
	15:43	1962.1	5.7	1				
	15:58	2047.8	<i>E</i> 5.7	75	5.71			ļļ.
	16:12	2133,9	861	-15	5,74			
	16 28	2219.4	85.5	15 .	5.7			
	16:43	2305/1	85.7	18	5.71			And the second
	16.58	2389.9	84.8	15	5.65			المخيا
	17:13	2474.8	84.9	/5	5.66			
	17:30	257 2.7	97.9	_ [7	5.76		-	-

Constan	Rule Tes	+			Strategy in the control of the contr
Amco 17	298000	(2 mp in-line, do	unstreen?		
DATE	TIME	RDG	Δ	EI	<u>_Q_</u>
6.27.07	17:45	2659.0	86.3	15	5.75
	18:01	2751.0	92	16	5.75
	18:16	2838.3	87.3	1.5	5.82
	18:31	2923.8	85.5	15	5.70
	18:46	3010,7	869	15	5.79
	19:01	3097,2	86,5	ľs	5,77
	19:16	3184.6	87.4	15	5.83
	19:32	3277.5			
	19:40	33 23.7			
	19:50	3387.0 3525.6			
20:15	20:13	3525.6			
	2078	3601.6			
	2040	3671.5			
	2102	3799,5			
	21 18	379 9 ,5 3893,4			
214	1 2139	4026.8			
	2207	, 4175.3			
	22:272	30 4292.3			
23	00 44	44813			
		FINAL			

			ا	•			0																		 			
		S'e	ے ام	ions	TAT 41	576	RATI	3. [/]	्ट ((T.	100) ν	c lin	٠,	~ ¥	stre	c en)					A Constitution of the Cons		 Р.	2		
						.,						7,0		1					The state of the s									
	D,)TE		į į	rim	F		RDO	G.			Δ				E	Γ		(\$	•							
4	6/2	7/0	7		9=	33	^	7	8 2	29	40											 						
		١١																					.,					
										- 1															 ,.,			
				20	: כ	27	-	8 1	1 3	6	دح											 			an Pantanana an arti			
				\mathcal{U})(39		8	20	6	,4											 			 			
				12	1 (9		8	33	4	۰٥											 			 , 4,0,,0,0,0,00,000			
				_ 2	4	17		80	41-	· 7.	٦,											 			 haragigag padani			4111
				2	L [38		B	55	0.	.4											 						
				2_	Z C	06		8	70	9	17																	
														İ								 			 			
				2	3:	٥ د			0 2	- 1	-											 			 			
								F	$=$ $_{1}$ $_{1}$	NA	۱L	_,										 			 .,			
			.,																			 			 paragraph and the second			
																						 			 erangan are	ļ		*17.7
																					an an annum de gas	 			rantama aratika 1988			
			.,.,.																							ļ	ļ	4100
																	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					 				ļ		
																								., 19,00,000	orbodorium tild attiti 111°	<u>- </u>		- 0.0
				The state of the s																					 			

														l	\.							 			 1/11/11/11/11		·	-,
								ļļ.										con a *co +co o co to +** \$** +c										
								ļ														 			 			
															<u>-</u>							 			 			
	ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										<u></u>															140
																						 			 	ļ		
								<u> </u>														 			 			
																						 			 .,			
		ļļ.			.,			ļļ.																	 			
																			100			 			 			
													n->												and the second second second second			
The state of the s																						 					ļ	
			and the same of th			7					7		Ì	Stemano stemanical		* constraint of the						OLIVE CONTRACTOR						

c	ons tens k	2-h Tool	A,	4-09		P. 1
Sensus	465	29156	(254	in line =	upstream)	
	4566					
	TIME			FT	8	
4.22.07	(0:00	454.7	4	EI		INITIAL
1 1 1 1	10:14:30		85.2	14:35	5.74	
		41735.8	85.9	15	5.7	
		4816.5	86.7	14:30	5.57	
	1 1 1	4902.3	75.8	ıs	5.72	
	1 3 / /	4994.7	92.4	16	5.78	
		505 2.2	57.5	ID	5,75	
		514 9.8	97.6	17	5.74	
\$ 1 mm m	12:00	5252.7	102.9	18	5.72	
	12:20	537 7.4	124.7	20	6.23	
	12:40	54818	104.4	20	5.22	
	13200	5595.0	1132	20	5.66	
	13:20	57080	(13.0	20	5.65	
1,		5824.5	114.5	20:30	5, 68	
;		593 1,2	106.7	19:30	5.47	
,	1 1 1	6058.7	27.5	23	5.54	
	14:43	-5.5		-2-0-	The state of the s	
		61794	120.7	22	5,49	
	15:00	6264.8	85.4	15	5.65.6	<u>.</u> g
	15,15	63483	83.5	15	5.57	
	15,30	643 1.0	82.7	is	# 5.5	<u>, </u>
)	1545	65158	8A.8	15	5.65	
	1600	Ġ601.0	85.2	15	5.68	
	1616	4686.9	<i>8</i> 5.9	15	5.73	
	1630	67723	85.4	15	5,69	
	1645	4867.8	98.5	15	φ.37 ³	?
	1700	69 42.3	74.5	15	4.97	? Follizer failus
	1715	7037.8	98.8	15	4.37 ?	
	17.30	7125.38.5	87.5	16 17	5,15	
	1746	7205.9	80.6	14	5,76	
	18:02	7 297.8	91,9	16	5.74	
	18:16	73848	87	14	6.31	7
	1.8 33	7476.0	91.2	17	5.36	
	18:42	7563.0	57	[J	5.80	
	19:02	7643.7	96.7	14	5,76	
V	19: 66	7731.1	87.4	(4	6.24	
	19.33	79740				

AA-20 Constant Rate test

KLEINFELDER AQUIFER TEST DATA, COH

Project Name:	BRC		Numb	ELDER AQ Der: 83	UIFEK Locatio	n: Palco Rd. Nr. WRF
		20	Obser	vation Wells:	AAZO	Sheet / of 3
						Measuring Point Height above Ground:
Test Started:	Date:	110/07		<i>-</i> 33 Pre-te	st Static W	ater Level (ft):
Test Ended:	Date:		_ Time:	Final \	Water Leve	el (ft):
					Capacity (type/hp):
Final Totalizer	Reading (g	al):		Rang	e of Pump	ing Rates (gpm):
-		particular and production of the contraction of the	in our months in the state of t	Avera	ge Pumpin	g Rate (gpm):
Test Conducte	·	\	The state of the s	17298000	T	
Time (Hr:min:sec)	Elapsed Time (minutes)	Water (feet)	Drawdown, Recovery (ft)	Totalizer (gallons)	Pumping Rate— (gpm)	
10:28:		3.52		4482,5	Rote	Prefest 9022.0
10:33:	0			4492,5	meter	start@ 1033
10:35:	2			4490.3	3.0	1000000
10:38:	5	1.80		4498,5	3,0	
10:39	6	1,85			3,0	
10 41:	8			4514.2	T	
10:43:00	10			4522,0		9062.3
10 49 00	16			4544.9	3,0	(w as cos p
10:53	20			4560.6		(10:54 = 9104.4)
11:04:	31			4603.1		10.07
11:05:	32	1.87			3,6	(11:05=9196.2)
11:09:		1.92				11/03/2
11:12:	39	1.92		4633.4	3.0	small vlv. adj.
11:20:	47	1.87		4663.9	3.0	
11:26:	53			4686.8	3.0	Small valve adj (2 1/28)
11 :31 :	58	1.78		4704.1	3.0	The state way to the
11 36:	683	1.78		4725.6	3.0	\
11 :44 :	761	1.31		4756.8	3.0	(11:45= 9309:7)
11 : So :	8Z77	1.80		4780.1	3.0	
11:55:	872	1.8)		4799.4	3.0	
12:00:	9287	1.80		4818.7	3.0	
: :		d up to	49pm -		ring	,
: ::	Shut		fix	- All Value	7	
12:10:10	9187		7.0		4.0	
12:11:	95 88	1.46			<u> </u>	
12:12:	3489	1.20		48509	4.0	·
12:15:	92	1.26		4865.5		Small value adj
2 :20 :	10297	1.29		4884.7	4.0	Leading Away & Wal
12 30	102	1:24		4930.5	4.0	Small valve adi
12:50	127	1:13		5031.8	4.0	
13:10:	147	1.21		5128,0	4.0	
				- W. L.		(Rev. 1-17-05; B.PECK; KA, RENO, NV)

						TEST DATA
Project Name:	BRC		Numb	oer: <u>83 (73</u>	Location	n: Meco Rd
Pumped Well:	AA 2E		Obser	vation Wells:		Sheet <u>2</u> of <u></u>
Source of Data	a:		Distar	nce from Pumped	Well (ft):	Measuring Point Height above Ground: ater Level (ft):
						l (ft):
						type/hp):
rinai i otalizer	Reading (g	aı):				ng Rates (gpm):
Test Conducte	d bv	1 1	<u>.</u>	Avera	ige Pumpini	g Rate (gpm):
Time (Hr:min:sec)	Elapsed Time (minutes)	Depth to Water (feet)		Totalizer (gallons)	Pumping Rate (gpm)	Notes
13:20:	157	1.26	(1)	K12= 2	4.0	
		1.24		5175.7	 	,
13 30	167			5223.7	4.0	
13 41 :	178	1.11		5275.4	4.0	(1)
13 SI	188			5324.4	4.0	(1352 = 9977.6)
: :	5600 Q	1400				
14 01 30		5.32 -				
14:02:		3.34 -	*>			
15:40:		3,50 -	>			
: :						
16:09:		3.50				
16:10:	ø					Start Constart Rade
16:10:30		1.80			4.0	Section 1 Assessment
16:11:	1	1.52		·	4.0	
16:11:30		1.31			4.0	
16:12:	2	1.21		53785	4.0	
16 : 13 :	3	1.09		3370.3	4.0	and of the
16:16:	6	1.27			4.0	small value adj
11 2 :				EA10 -	4.0	
16 20	10	1.27		5418.0 <10.0		
16 27 16 36	17	1.27		5451.9	4.0	
	26	1.23		5494.5	4.0	sm valve adj:
16 45	35	1.22		5538.1	4.0	
16 'SI '	41	1.26		5566.8	4.0	
17 00 :	50	1.28		56093	4.0	(1701 - 10151-8)
17:11:	66	1.20		5660.8	4.0	SM valve any
17:30:	80	1.2 /		5752.0	4.0	,
18:10:	120	1.16		5949.8	1.0	
18:50:	150	1.09		6091.5	4.0	
19:10:	180	1.13		62370	4.0	
19:45	215	1.07		6403.2	4.0	·
10:00:	220	1.40		6515.7	4.0	

To any the second of the secon

	er3	a e				TEST DATA	
Project Name:	131	46	Numb	er: <u>83173</u>	Locatior	n:	
Pumped Well:	AA	20	Obser	vation Wells:		Sheet <u>3</u> of <u>3</u>	<u> </u>
Source of Data	l:		Distar	nce from Pumped	Well (ft):	Measuring Point Height above Ground:	
Test Started:	Date:	110/07	Time:	Pre-te	st Static Wa	Measuring Point Height above Ground: ater Level (ft):	
						el (ft):	
Initial Totalizer	Reading (g	jal):		Pump	Capacity (t	type/hp):	_
Final Totalizer	Reading (g	al):	j.	Rang	je of Pumpii	ing Rates (gpm):	
				Avera	ge Pumping	g Rate (gpm):	_
Test Conducte	r	I	<u></u>				
Time (Hr:min:sec)	Elapsed Time	Depth to Water	Drawdown, Recovery	Totalizer (gallons)	Pumping Rate	Notes	
	(minutes)	(feet)	(ft)		(gpm)		
20:30:	250	1.12		6623.0	4.0		
21:10:	290	1.16		6912.0	4.0		
21:40	320	1.16		6953.8	4-0		
22.10	350	1.16		7095-0	4.0		
22:40:	420	1.02		7238,0	4.0		
23:10:	450	1.03		7382.0	4,0		
23:42:	532	1.08		7537.0	4.0		
24:10:	5:40	1.06		7670.0	4,0		
24:20:		1.10		7721.1	4,0	Pump oft	
14:21:		4	3,26			,	
24 · 22 ·			3,27				
14:29:	_		3,2/				
7:14:			3 ·				
: :							
: :							
: :							
: :							
: ;							
: :							
: :							
: :							
: :							
: :							
: :							
: :		·					
: :							
: :							
: :							
: :							
: :							

			KLEINF	ELDER AC	QUIFER	TEST DAT	-A	
Project Name:	BRC A	quer Te	<u>S</u> ∔ Numb	er: <u>83713</u>	Location	: BMI NE		
Pumped Well:	AA-08	-EW	Obser	vation Wells:			Sheet _ / of _ 2_	
Source of Data	a: Transki	ucod	Distar	nce from Pumped	d Well (ft):	Measuring	g Point Height above Ground:	
Test Started:	Date: _7/1	8/07	_ Time: _ <i>_/_7</i>	Pre-t	est Static Wa	ater Level (ft):		
Test Ended:	Date: 7//	19/07	_ Time:	Final	l Water Level	(ft):		_
Initial Totalizer	Reading (gal):		Pum	p Capacity (t	ype/hp):	42 gpm, 5HP	- -
Final Totalizer	Reading (g	jal):		Ran	nge of Pumpir	ng Rates (gpm):	29	_
Test Conducte	ed by	Tonsdu	cer	Aver	age Pumping	g Rate (gpm):	Ja 1	<u>-</u>
Time (Hr:min:sec)	Elapsed Time (minutes)	1 1		Totalizer (gallons)	Pumping Rate (gpm)	(Rotometer)	Notes	
12:58:		32.11				,	-	
13:10:	Ø			8288.4			4/2820.5>	
13 12	2	32,24			20.0			
13:13:	3	32.23	·					
13:14:	4	32.23			1			
13:15:	5	32.27		÷				·
13 13		1 20 , 10 kg	A STATE OF THE PROPERTY OF THE	N. A. A. P. Charles Shake A Landon A. C. A. Lande & M. Charles S. D. C. A. Charles S. A. Charles S. D. C. A. Charles S. A. Charles S. D. C. A. Charles S. A. Charles S. D. Charles S. D. C. A. Charles S. A. Charles S. D. Charles	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	TO TO) /3	
		32,42				State:	4	
17 [:] 20 [:]	Ø	32,76				Conclait 6	ade Test - START	
17 ²³ :	3	32,20			29	consider a	1057 2//1/7/_	
17 : SZ :	in de la constant de	32.21			28			
18:30:		32.19			28		- · · · · · · · · · · · · · · · · · · ·	
18:56:		32.19			29			
1930		32.19			29			;
20:00:		32.19			29			
20 30		32,19						
1100		32.18			29			
21 36		32,18			19			
22:00:		32.19			29			
22:30		32,18			29	-		
23:00:		32,19			29			
23:30:		32.18			29			
00 00 ·		32,19			29			
00:30		32.20			29			
01:00:		32.18			29			
01:30:		32.18			29			
0200		32,19			29			
12:30:		32.19			29			
05 00		32.19			29			
03:30		32.18			29			
04:00:		32,19	·		29	()		

7/19

PROJECT BBC PROJECT NO. 83/73

SUBJECT AA08 Constant Test BY DATE 7/19/07

REVIEWED BY DATE 7/20/07

7/10 0430 1500 32.19 29 0530 32.20 29 0630 32.10 29 0700 32.20 29 0700 32.20 29 0700 32.20 29 0700 32.20 29 0700 32.20 29 0700 32.20 29 0700 32.20 28 0700 32.20 28 1030 32.20 28 1030 32.20 28 1030 32.17 28 1100 32.19 28 120 120 120 120 120 120 120	Thurs	The water	Porp session
0500 32.19 0530 32.20 29 0600 31.19 29 0700 32.20 29 0700 32.20 28 0750 32.20 28 0750 32.20 28 0750 32.20 28 0750 32.20 28 0750 32.20 28 0750 32.20 28 1100 32.20 29 1030 32.20 28 1100 32.19 28 120 28 120 28 120 28 120 28 120 28 120 28 13100 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 32.19 28 13100 120 120 120 120 120 120 120 120 120	7/19 0430	actives and emission that come actives of the state of th	29
29 32.20 29 29 29 29 29 29 29 29 29 29 29 29 29	1500	•	29
2600 2600 2600 2600 2600 2700 2700 2700	1530	32.20	as
0630 0750 32.20 28 0750 32.20 28 0800 32.21 28 0820 28 0820 28 28 0820 29 0930 32.20 29 1030 32.20 28 1100 32.20 28 1100 32.17 28 120 120 120 120 120 120 120 120 120 120		<u> 3</u> ፈ ፈባ	29
0700 0750 0750 0750 0750 0750 0750 0750			29
0780 0800 3220 28 0800 3220 28 0900 3220 28 1000 3220 28 1100 3220 28 1100 3219 28 1130 3219 28 1230 3219 28 1300 3219 28 1300 3219 28 1300 3219 28 1300 3219 28 1300 3219 28 1300 3219 28 1300 3219 28 13100 3219 28 13100 3219 28 13100 3219 28 13100 3219 28 13100 5217 28 13100 Fuel truck with across discharge home (let set of tries) 1400 3217 28 1400 3211 28 1500 3211 28 1500 3211 28 1500 3211 28 1500 3211 28 1700 3212 3217 28 1700 3212 3217 28 1730 3217 28 1730 3217 28 1730 3218 29 7770		32.20	28
0300 0830 0830 0830 0830 0830 0830 0830 0830 0900 32.20 28 1000 32.20 28 1100 32.20 28 1100 32.17 28 1130 1230 32.19 28 15:08:40 Fuel truck they accross discharge hose (Ist set of tree) 13:05 14:00 13:00 32.17 28 13:00 13:00 14:00 13:00 32.17 28 15:00 32.17 28 15:00 32.17 28 15:00 32.17 28 15:00 32.17 28 15:00 32.17 28 15:00 32.17 28 15:00 32.17 28 15:00 32.17 28 16:00 32.15 28 17:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 28 28 28 28 28 28 28 28 2		32.20	28
32.20 32.20 28 0900 32.20 28 0930 32.20 28 1000 32.20 28 1100 32.20 28 1100 32.19 28 1130 1200 32.19 28 1300 32.19 28 13:05: 40 Fuel truck entry across discharge hose (Ist set of truc) 13:05: 40 Fuel truck entry across discharge hose (Ist set of truc) 13:50 14:00 13:21 14:00 32.17 28 15:00 32.18 28 28 28 28 28 28 28 28 29 28 28 28 28 28 28 28 28 28 28 28 28 28			28
28 0900 32.20 28 0930 1000 32.20 28 1100 32.20 28 1100 32.19 28 1130 120 32.19 28 1230 32.19 28 1230 32.19 28 1230 32.19 28 1230 32.19 28 13:05:40 Fuel truck early across discharge hose (Ist set of tree) 13:05 14:00 Fuel truck early across discharge hose (Ist set of tree) 13:30 14:00 Fuel truck early across discharge hose (Ist set of tree) 13:30 14:00 32.17 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 15:00 32.10 28 16:00 32.10 28 16:00 32.10 28 16:00 32.10 28 16:00 32.10 28 16:00 32.10 28 17:00 32.10 28 18:00 32.10 28 18:00 32.10	0300		28
32.20 0930 1000 32.20 28 1100 32.20 28 1100 32.19 28 1130 1200 32.19 28 1230 32.19 28 1300 32.19 28 1300 32.19 28 13:05: 40 Fuel truck settly across discharge hose (1st set of true) 13:05 14:00 13:05 14:00 32.17 28 14:00 32.17 28 15:00 32.10 32.10 28 15:00 32.10 32	0830		<i>2</i> 8
1030 1000 32.20 28 1100 32.19 28 1100 32.19 28 1230 32.19 28 1230 32.19 28 1230 32.19 28 13:05:40 Fuel truck early across discharge hose (1st set of truc) B:07 white generator fuel of fuel 1330 1400 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.11 28 1500 32.12 28 1600 32.15 28 1600 32.15 28 1600 32.15 28 1600 32.15 28 1700 32.12 26 1720 - pump stopped. 1732 32.34 32.34 32.34 32.34	0900	***	28
1030 1100 32.19 28 1130 1200 32.19 28 1230 32.19 28 13:05:40 Fuel truck early across discharge hose (1st set of true) 13:07 white generator field of find 13:30 14:00 32.17 28 15:05:40 Fuel truck early across discharge hose (1st set of true) 13:30 14:00 32.17 28 15:00 32.10 28 16:00 32.11 28 16:00 32.11 28 17:00 32.11 28 16:00 32.12 28 16:00 32.15 28 16:00 32.15 28 16:00 32.15 28 17:00 32.15 28 17:00 32.15 28 17:00 32.15 28 17:00 32.15 28 17:00 32.15 28 17:00 32.15 28 17:00 32.15 28 17:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 28 18:00 32.15 32.15 32.16 32.13 32.14 32.15 32.15 32.15 32.16 32.15 32.16 32.16 32.16 32.16 32.16 32.16	0930		
1100 1130 1130 1200 1230 1230 32.19 28 13.05: 40 13.05: 40 13.07 13.05: 40 13.05: 40 13.05: 40 13.05: 40 13.05: 40 13.05: 40 13.10 13.05 13.10 13.05 13.10 13.05 14.00 13.10 14.00 14.00 15.10 15.00 16.00 1	1000	32.20	
1130 1200 1230 1230 1300 32.19 28 131.05:40 Fuel truck early across discharge hose (1st set of trace) 13:07 while generator full of fuel 13:30 14:00 14:00 32.17 28 15:09 16:00 32.10 28 15:00 32.11 28 28 28 28 28 28 28 28 28 28 29 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	1030	32.20	28
1200 1230 1230 1230 32.19 28 1300 32.18 28 13:05:40 Fuel truck early across discharge hose (1st set of tree) 13:07 white generator field of fuel 13:30 Fuel truck early across discharge hose (1st set of tree) 14:00 14:00 14:00 15:00 16:00 32.17 28 15:00 32.18 28 15:00 32.18 28 16:00 32.18 28 16:00 32.18 28 17:00 32.18 28 28 28 28 29 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 21 20 21 21 20 21 21 21 21 21 22 22 23 23 24 25 25 26 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1100	32.19	28
1230 1230 1300 32.18 28 13:05:40 Fuel truck early across discharge hose (1st set of tires) 13:07 while generator half of fuel 13:30 Fuel truck exit across discharge hose (1st set of tires) 14:00 32.17 28 14:30 32.14 28 15:00 32.17 28 16:30 32.18 28 16:30 32.18 28 16:30 32.18 28 17:30 32.18 28 17:30 32.12 32.18 28 17:30 32.12 32.12 32.12 32.12 32.12 32.12 32.13 48 17:30 32.34 32.34 32.36 32.36 32.36 32.36		32,19	A 62
13:05:40 Fuel truck 32.17 13:05:40 Fuel truck early accross discharge hose (1st set of time) 13:07 White generator fuel of fuel 13:10 Fuel truck early accross discharge hose (1st set of time) 13:30 14:00 14:00 15:01 16:00 16			28
13:05:40 Fuel truck early across discharge hose (1st set of tireo) B:11:00 Fuel truck early across discharge hose (1st set of tireo) 1330 Fuel truck exit across discharge hose (1st set of tires) 1400 32:17 28 1500 32:16 28 1500 32:15 28 1600 32:15 28 1600 32:15 28 1700 32:12 28 1720 - pump stopped. 1732 32:36 1750 32:36 1750 32:36 1750 32:36 1750 32:36 1750 32:36		_	28
1330 1400 1400 1430 1430 1500 1530 1530 1530 1530 1530 1530 15	12 1 2 1 2	32.10	28
1400 1430 32.14 28 1500 32.14 28 1530 32.15 28 1600 32.15 28 1600 32.15 28 1630 32.15 28 28 1630 32.12 28 27 27 28 28 28 28 29 20 20 21 22 22 23 23 24 25 27 27 28 28 29 20 20 21 22 26 27 27 28 28 29 20 20 21 22 26 27 27 28 28 29 20 20 21 20 20	B:07 While gener B:11:00 Fuel truck	rater full of full across discharge hose which across discharge hose (161 s.	e (1st set of three)
1430 1500 32.16 28 1530 32.15 28 1600 32.15 28 1630 32.13 20 1700 32.12 28 1770 32.12 28 27 1770 32.13 28 27 1770 32.13 28 27 1770 32.13 28 28 28 29 20 20 32.12 20 3	1400	Machine and the contract of th	State .
1500 1530 23.15 28 1600 32.15 20 1630 32.13 20 1700 32.12 20 32.12 20 1770 - pump slopped. 1732 32.36 1806 32.36 32.36 32.36 32.36 32.36	1430	32.14	·
1530 1600 32.15 28 1620 1630 32.13 20 1700 32.12 223 17700 - pump slopped. 1732 32.34 1750 1806 32.36 32.36 32.36 32.36		32.16	
1600 1630 1700 32.13 28 28 1700 32.12 32.12 28 1730 - pump slopped. 1732 32.34 1750 1806 32.36 32.36 32.36 32.36 32.36		32.15	
1630 1700 32.12 32.12 28 1730 - pump slopped. 1732 32.34 1750 1806 32.36 32.36 32.36 32.36	The state of the s		
1700 32.12 28 27 1730 - pump slopped. 1732 32.34 1750 1804 32.34 20 0910 32.51			
1730 - pump slopped. 1732 32.34 1750 32.36 1806 32.36 120 0910 9251			
1732 1750 1806 32.36 32.36 32.36 32.36 32.36 32.36 32.36	1770 - man alamal		2.6 2.7
1750 1806 32.36 32.36 32.36 20 0710 32.51		20.24	
1804 20 0710 32.34 \$			
20 0910 3251			
4000	-	36.24	•
4.0%	20 0710	3251	B
	• •	, and the second	

WALTER BARRIES PROJECT NO. 7/18/07 + REVIEWED BY DATE BY Karin Horgan DATE 7/19/07 SUBJECT () Dike Start of Tim AA-08 EVN AAOWK 37.77 AA-08 OWB 7.5 1302 15.05 15.19 Toc 15.66 13.03 14.61 TOC 13:07 CONSTANT RATE TEST Head Head AA OBOWA AA -08-0WB Time Time Time 15.23 14.65 17:25 17:26 17:27 15.30 18:30 15135 15,28 18:21 14.7 18:32 14.7 19:31 19:32 19:30 15.35 15.28 14,71 20,32 15,36 15.30 20:31 20:30 21:30 14,71 21.37 15.36 15:31 21,31 12.32 22:30 22,31 15.37 15.31 14.72 23:30 23,31 14.72 15,37 15,31 23.32 00:30 15 37 15.30 00:31 14.70 00:82 01:32 01 30 15,30 14 20 01:31 15.37 14.71 02:31 15,37 0230 15.30 02:32 03:30 15.30 14.71 03: 32 15.37 03:31 14.71 04:32 15,37 04:36 04:30 15.30 05:32 14.71 15.36 09:30 15.30 05:3/ 06:30 06:31 14.70 15.36 15,29 06:32 07:31 14.69 15.35 07:32 15.28 07:30 15.28 14.69 0831 0532 0830 15.35 0930 15.28 1590 14.69 0932 15.35 1031 1033 15.28 14.69 15.35 1932 1135 1134 14.68 15.28 1133 15.34 1232 15.29 1234 14.69 1235 15.35 1331 14.69 15.29 1332 1334 15.36 14.70 1433 1432 1431 15,29 15,36 1535 14.70 1534 15.35 1533 15.29 15.36 1635 14.69 15.30 1637 1634 14.64 1861 15.23 1803 1804 15.29

				<u> </u>								
KLEINFELDER AQUIFER TEST DATA												
	Project Name: Bic Number: Location:											
Pumped Well:	14-08-	EW	Obser	vation Wells: <u>////</u> -	08-0WA	1 OWB, AA-08 Sheet of						
Source of Data	1:		Distai	nce from Pumped \	Well (ft):	Measuring Point Height above Ground:						
Test Started:	Date: <u>7/</u>	16/07	Time:	Pre-te:	st Static Wa	ater Level (ft): 15-71 40-38 (0mm cold						
Test Ended:	Date:	and and	Time:	Final V	Vater Level	(ft):						
Initial Totalizer	Reading (g	jal): <u>772</u> "	11 , 12.	255 (Swace Pump	Capacity (t	ype/hp):						
Final Totalizer	Reading (g	al):				ng Rates (gpm):						
Test Conducte	d by			Avera	ge Pumping	g Rate (gpm):						
Time	Elapsed Time	Depth to Water	Drawdown, Recovery	lotalizer	Pumping Rate	Notes						
(Hr:min:sec)	(minutes)	(feet)	(ft)	(gallons)	(gpm)							
17 15 00		40.38		77211	5gd							
17 19 30		40.45										
17:24:30		40.41		774/3/								
17:30:80		40.41		7777/ 1231	2	Sec. 1						
17:40:30	25.30	40.39		78621,12397		Bupso is up to 79 HZ @ Fg&ll-is						
18:00 00		40.41		2019.8	8	1						
B: 20:00		40.38		81711	8							
: :												
: :					-	# 						
						7						
: :			· · · · ·									
: :	:											
: :												
: :			7 4									
: :												
	· 											
		1 1										
: :		-										
: :				*								
: :						1 %						
:, :												
: :												
: :												
: :												
: :	-,											
: :												
: :		Ŷ	-									
: :												
: :		,										
: :												
			<u> </u>			, ser						